Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Mantar Türlerinin Lakkaz Aktivitelerinin Kıyaslanması ve Clytocibe nebularis Türünün Biyosensör Sistemlerine Uygulanabilirliğinin İncelenmesi

Yıl 2021, , 911 - 919, 17.09.2021
https://doi.org/10.17798/bitlisfen.957370

Öz

Lakkaz, moleküler oksijen kullanarak fenolik bileşikleri yükseltgeyen ve mantarlarda yaygınca bulunan bir enzimdir. Bu çalışmada, Stropharia aeruginosa, Trametes versicolor, Hypholoma fasciculare, Cantharellus cibarius, Clytocibe nebularis ve Amanita muscaria gibi mantar türlerinin lakkaz aktivitelerinin yanı sıra toplam protein miktarının belirlenmesi ve kıyaslanması amaçlanmaktadır. Sonuçlar değerlendirildiğinde, en yüksek lakkaz aktivitesi değerinin Trametes versicolor türüne, en düşük aktivite değerinin de Amanita muscaria türüne ait olduğu gözlenmiştir. Ayrıca, Clytocibe nebularis ve Amanita muscaria türlerinin lakkaz aktivitesi ilk kez bu çalışmada rapor edilmiştir. Çalışmanın bir diğer hedefi de aktivitesi değeri görece yüksek olan ve daha önce biyosensör sistemlerinde kullanılmamış bir mantar türünün, doku homojenatı temelli bir biyosensör yapımında kullanılmasıdır. Bu bağlamda, Clytocibe nebularis dokusu kullanılarak geliştirilen biyosensör ile 100 – 1000 µM aralığındaki artan katekol konsantrasyonları için doğrusal bir amperometrik yanıt elde edilmiştir.

Teşekkür

Trakya Üniversitesi Fen Fakültesi Kimya Bölümü öğretim üyelerinden Prof. Dr. Hülya Yağar ve Doç. Dr. Hakkı Mevlüt Özcan’a laboratuvar olanaklarını sağladıkları için teşekkürü bir borç bilirim.

Kaynakça

  • Zotti M., Persiani A.M., Ambrosio E., Vizzini A., Venturella G., Donnini D., Angelini P., Di Piazza S., Pavarino M., Lunghini D., Venanzoni R., Polemis E., Granito V.M., Maggi O., Gargano M.L., Zervakis G.I. 2013. Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosystems, 147 (1): 219–225.
  • Newbound M., Mccarthy M.A., Lebel T. 2010. Fungi and the urban environment: a review. Landscape and Urban Planning, 96 (3): 138–145.
  • Yalçın M., Akçay Ç., Düzkale Sözbir G. 2020. Meşe, kayın odunu ve fındık kabuğu atıklardan lentinus edodes (şitaki) mantarı üretimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (3): 2051–2061.
  • Chen W.-Y., Chang C.-Y., Li J.-R., Wang J.-D., Wu C.-C., Kuan Y.-H., Liao S.-L., Wang W.-Y., Chen C.-J. 2018. Anti-inflammatory and neuroprotective effects of fungal immunomodulatory protein involving microglial inhibition. International Journal of Molecular Sciences, 19 (11): 3678.
  • Yurchenko E., Menchinskaya E., Pislyagin E., Trinh P., Ivanets E., Smetanina O., Yurchenko A. 2018. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced parkinson’s disease models. Marine Drugs, 16 (11): 457.
  • Yadav M., Yadav A., Yadav J.P. 2014. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from eugenia jambolana lam. Asian Pacific Journal of Tropical Medicine, 7 (S1): 256–261.
  • Canlı K., Akata İ., Yetgin A., Benek A., Altuner E.M. 2020. In vitro antimicrobial activity screening of leucoagaricus leucothites and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2): 1250–1257.
  • Vaz J.A., Almeida G.M., Ferreira I.C.F.R., Martins A., Vasconcelos M.H. 2012. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: identification of phenolic acids with cytotoxic potential. Food Chemistry, 132 (1): 482–486.
  • de Souza P.M., de Assis Bittencourt M.L., Caprara C.C., de Freitas M., de Almeida R.P.C., Silveira D., Fonseca Y.M., Filho E.X.F., Pessoa Junior A., Magalhães P.O. 2015. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46 (2): 337–346.
  • Ahmed A., Bibi A. 2018. Fungal cellulase; production and applications: minireview. LIFE: International Journal of Health and Life Sciences, 4 (1): 19–36.
  • Ahmed S., Riaz S., Jamil A. 2009. Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84 (1): 19–35.
  • Singh A.K., Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166 (2): 486–520.
  • Marusek C.M., Trobaugh N.M., Flurkey W.H., Inlow J.K. 2006. Comparative analysis of polyphenol oxidase from plant and fungal species. Journal of Inorganic Biochemistry, 100 (1): 108–123.
  • Senthivelan T., Kanagaraj J., Panda R.C. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach - a review. Biotechnology and Bioprocess Engineering, 21 (1): 19–38.
  • Wang F., Terry N., Xu L., Zhao L., Ding Z., Ma H. 2019. Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms, 7 (12): 665.
  • Agrawal K., Chaturvedi V., Verma P. 2018. Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessing, 5 (1): 4.
  • Buée M., Courty P.E., Mignot D., Garbaye J. 2007. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology and Biochemistry, 39 (8): 1947–1955.
  • Pointing S.B., Pelling A.L., Smith G.J.D., Hyde K.D., Reddy C.A. 2005. Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research, 109 (1): 115–124.
  • Luis P., Walther G., Kellner H., Martin F., Buscot F. 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 36 (7): 1025–1036.
  • D’Souza T.M., Boominathan K., Reddy C.A. 1996. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by pcr. Applied and Environmental Microbiology, 62 (10): 3739–3744.
  • Daroch M., Houghton C.A., Moore J.K., Wilkinson M.C., Carnell A.J., Bates A.D., Iwanejko L.A. 2014. Glycosylated yellow laccases of the basidiomycete stropharia aeruginosa. Enzyme and Microbial Technology, 58–59: 1–7.
  • Lorenzo M., Moldes D., Rodríguez Couto S., Sanromán M.A. 2005. Inhibition of laccase activity from trametes versicolor by heavy metals and organic compounds. Chemosphere, 60 (8): 1124–1128.
  • Šnajdr J., Steffen K.T., Hofrichter M., Baldrian P. 2010. Transformation of 14c-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes gymnopus erythropus and hypholoma fasciculare. Soil Biology and Biochemistry, 42 (9): 1541–1548.
  • Ng T.B., Wang H.X. 2004. A homodimeric laccase with unique characteristics from the yellow mushroom cantharellus cibarius. Biochemical and Biophysical Research Communications, 313 (1): 37–41.
  • Tüylek Z. 2017. Biyosensörler ve nanoteknolojik etkileşim. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6 (2): 71–80.
  • Çakar B. 2018. Mikrobiyal ped biyosensörü ile su toksitesi i̇zlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7 (2): 484–491.
  • Raymundo-Pereira P.A., Silva T.A., Caetano F.R., Ribovski L., Zapp E., Brondani D., Bergamini M.F., Marcolino L.H., Banks C.E., Oliveira O.N., Janegitz B.C., Fatibello-Filho O. 2020. Polyphenol oxidase-based electrochemical biosensors: a review. Analytica Chimica Acta, 1139: 198–221.
  • Haghighi B., Gorton L., Ruzgas T., Jönsson L.J. 2003. Characterization of graphite electrodes modified with laccase from trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta, 487 (1): 3–14.
  • Akyilmaz E., Turemis M., Yasa I. 2011. Voltammetric determination of epinephrine by white rot fungi (phanerochaete chrysosporium me446) cells based microbial biosensor. Biosensors and Bioelectronics, 26 (5): 2590–2594.
  • Leite O.D., Lupetti K.O., Fatibello-Filho O., Vieira I.C., Barbosa A. de M. 2003. Synergic effect studies of the bi-enzymatic system laccaseperoxidase in a voltammetric biosensor for catecholamines. Talanta, 59 (5): 889–896.
  • Tuncay D., Yagar H. 2020. Decolorization of reactive blue-19 textile dye by boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17 (6): 3177–3188.
  • Silva L.M.C., Salgado A.M., Coelho M.A.Z. 2010. Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development. Environmental Technology, 31 (6): 611–616.
  • Zhang G.Q., Wang Y.F., Zhang X.Q., Ng T.B., Wang H.X. 2010. Purification and characterization of a novel laccase from the edible mushroom clitocybe maxima. Process Biochemistry, 45 (5): 627–633.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1–2): 248–254.
  • Shin K.S., Lee Y.J. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete coriolus hirsutus. Archives of Biochemistry and Biophysics, 384 (1): 109–115.
  • Wang H.X., Ng T.B. 2006. Purification of a laccase from fruiting bodies of the mushroom pleurotus eryngii. Applied Microbiology and Biotechnology, 69 (5): 521–525.
  • Baltierra-Trejo E., Márquez-Benavides L., Sánchez-Yáñez J.M. 2015. Inconsistencies and ambiguities in calculating enzyme activity: the case of laccase. Journal of Microbiological Methods, 119: 126–131.
  • Moressi M.B., Zon A., Fernández H., Rivas G., Solis V. 1999. Amperometric quantification of alternaria mycotoxins with a mushroom tyrosinase modified carbon paste electrode. Electrochemistry Communications, 1 (10): 472–476.
  • Kozan J.V.B., Silva R.P., Serrano S.H.P., Lima A.W.O., Angnes L. 2007. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (cocus nucifera l.) fibers. Analytica Chimica Acta, 591 (2): 200–207.
  • Anik Ü., Çevik S. 2009. Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchimica Acta, 166 (3–4): 209–213.
  • Ozcan H.M., Sagiroglu A. 2014. Fresh broad (vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds. Artificial Cells, Nanomedicine and Biotechnology, 42 (4): 256–261.
  • Odaci D., Timur S., Telefoncu A. 2008. Bacterial sensors based on chitosan matrices. Sensors and Actuators, B: Chemical, 134 (1): 89–94.
  • Lemieszek M.K., Nunes F.M., Marques G., Rzeski W. 2019. Cantharellus cibarius branched mannans inhibits colon cancer cells growth by interfering with signals transduction in nf-ĸb pathway. International Journal of Biological Macromolecules, 134: 770–780.
  • Wang F., Hu J.H., Guo C., Liu C.Z. 2014. Enhanced laccase production by trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresource Technology, 166: 602–605.
  • Lebrun J.D., Demont-Caulet N., Cheviron N., Laval K., Trinsoutrot-Gattin I., Mougin C. 2011. Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: a study of enzymatic system in trametes versicolor. Chemosphere, 82 (3): 340–345.
  • Pandey N., Budhathoki U. 2007. Protein determination through bradford’s method of nepalese mushroom. Scientific World, 5 (5): 85–88.
  • Tong P., Hong Y., Xiao Y., Zhang M., Tu X., Cui T. 2007. High production of laccase by a new basidiomycete, trametes sp. Biotechnology Letters, 29 (2): 295–301.
  • Xiao Y.Z., Chen Q., Hang J., Shi Y.Y., Wu J., Hong Y.Z., Wang Y.P. 2004. Selective induction, purification and characterization of a laccase isozyme from the basidiomycete trametes sp. ah28-2. Mycologia, 96 (1): 26–35.
  • Moon-Jeong Han;, Hyoung-Tae Choi;, Hong-Gyu Song 2005. Purification and characterization of laccase from the white rot fungus trametes versicolor. Journal of Microbiology, 43 (6): 555–560.

Comparison of Laccase Activities of Some Fungi and Investigation of Applicability to Biosensor Systems

Yıl 2021, , 911 - 919, 17.09.2021
https://doi.org/10.17798/bitlisfen.957370

Öz

Laccase is an enzyme commonly found in fungi that oxidizes phenolic compounds using molecular oxygen. This study aims to determine and compare the total protein amount as well as the laccase activities of fungal species such as Stropharia aeruginosa, Trametes versicolor, Hypholoma fasciculare, Cantharellus cibarius, Clytocibe nebularis and Amanita muscaria. When the results were evaluated, it was observed that the highest laccase activity value belongs to Trametes versicolor species and the lowest activity value belongs to Amanita muscaria species. Moreover, laccase activity of Clytocibe nebularis and Amanita muscaria species was reported for the first time in this study. Another goal of the study was to use a fungal species with relatively high activity value, which has not been used in biosensor systems before, to construct a tissue homogenate-based biosensor. Therefore, a linear amperometric response was obtained for increasing catechol concentrations in the range of 100 – 1000 µM with the biosensor developed using the Clytocibe nebularis.

Kaynakça

  • Zotti M., Persiani A.M., Ambrosio E., Vizzini A., Venturella G., Donnini D., Angelini P., Di Piazza S., Pavarino M., Lunghini D., Venanzoni R., Polemis E., Granito V.M., Maggi O., Gargano M.L., Zervakis G.I. 2013. Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosystems, 147 (1): 219–225.
  • Newbound M., Mccarthy M.A., Lebel T. 2010. Fungi and the urban environment: a review. Landscape and Urban Planning, 96 (3): 138–145.
  • Yalçın M., Akçay Ç., Düzkale Sözbir G. 2020. Meşe, kayın odunu ve fındık kabuğu atıklardan lentinus edodes (şitaki) mantarı üretimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (3): 2051–2061.
  • Chen W.-Y., Chang C.-Y., Li J.-R., Wang J.-D., Wu C.-C., Kuan Y.-H., Liao S.-L., Wang W.-Y., Chen C.-J. 2018. Anti-inflammatory and neuroprotective effects of fungal immunomodulatory protein involving microglial inhibition. International Journal of Molecular Sciences, 19 (11): 3678.
  • Yurchenko E., Menchinskaya E., Pislyagin E., Trinh P., Ivanets E., Smetanina O., Yurchenko A. 2018. Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquat-induced parkinson’s disease models. Marine Drugs, 16 (11): 457.
  • Yadav M., Yadav A., Yadav J.P. 2014. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from eugenia jambolana lam. Asian Pacific Journal of Tropical Medicine, 7 (S1): 256–261.
  • Canlı K., Akata İ., Yetgin A., Benek A., Altuner E.M. 2020. In vitro antimicrobial activity screening of leucoagaricus leucothites and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8 (2): 1250–1257.
  • Vaz J.A., Almeida G.M., Ferreira I.C.F.R., Martins A., Vasconcelos M.H. 2012. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: identification of phenolic acids with cytotoxic potential. Food Chemistry, 132 (1): 482–486.
  • de Souza P.M., de Assis Bittencourt M.L., Caprara C.C., de Freitas M., de Almeida R.P.C., Silveira D., Fonseca Y.M., Filho E.X.F., Pessoa Junior A., Magalhães P.O. 2015. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46 (2): 337–346.
  • Ahmed A., Bibi A. 2018. Fungal cellulase; production and applications: minireview. LIFE: International Journal of Health and Life Sciences, 4 (1): 19–36.
  • Ahmed S., Riaz S., Jamil A. 2009. Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84 (1): 19–35.
  • Singh A.K., Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166 (2): 486–520.
  • Marusek C.M., Trobaugh N.M., Flurkey W.H., Inlow J.K. 2006. Comparative analysis of polyphenol oxidase from plant and fungal species. Journal of Inorganic Biochemistry, 100 (1): 108–123.
  • Senthivelan T., Kanagaraj J., Panda R.C. 2016. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach - a review. Biotechnology and Bioprocess Engineering, 21 (1): 19–38.
  • Wang F., Terry N., Xu L., Zhao L., Ding Z., Ma H. 2019. Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms, 7 (12): 665.
  • Agrawal K., Chaturvedi V., Verma P. 2018. Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessing, 5 (1): 4.
  • Buée M., Courty P.E., Mignot D., Garbaye J. 2007. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology and Biochemistry, 39 (8): 1947–1955.
  • Pointing S.B., Pelling A.L., Smith G.J.D., Hyde K.D., Reddy C.A. 2005. Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research, 109 (1): 115–124.
  • Luis P., Walther G., Kellner H., Martin F., Buscot F. 2004. Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 36 (7): 1025–1036.
  • D’Souza T.M., Boominathan K., Reddy C.A. 1996. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by pcr. Applied and Environmental Microbiology, 62 (10): 3739–3744.
  • Daroch M., Houghton C.A., Moore J.K., Wilkinson M.C., Carnell A.J., Bates A.D., Iwanejko L.A. 2014. Glycosylated yellow laccases of the basidiomycete stropharia aeruginosa. Enzyme and Microbial Technology, 58–59: 1–7.
  • Lorenzo M., Moldes D., Rodríguez Couto S., Sanromán M.A. 2005. Inhibition of laccase activity from trametes versicolor by heavy metals and organic compounds. Chemosphere, 60 (8): 1124–1128.
  • Šnajdr J., Steffen K.T., Hofrichter M., Baldrian P. 2010. Transformation of 14c-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes gymnopus erythropus and hypholoma fasciculare. Soil Biology and Biochemistry, 42 (9): 1541–1548.
  • Ng T.B., Wang H.X. 2004. A homodimeric laccase with unique characteristics from the yellow mushroom cantharellus cibarius. Biochemical and Biophysical Research Communications, 313 (1): 37–41.
  • Tüylek Z. 2017. Biyosensörler ve nanoteknolojik etkileşim. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6 (2): 71–80.
  • Çakar B. 2018. Mikrobiyal ped biyosensörü ile su toksitesi i̇zlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7 (2): 484–491.
  • Raymundo-Pereira P.A., Silva T.A., Caetano F.R., Ribovski L., Zapp E., Brondani D., Bergamini M.F., Marcolino L.H., Banks C.E., Oliveira O.N., Janegitz B.C., Fatibello-Filho O. 2020. Polyphenol oxidase-based electrochemical biosensors: a review. Analytica Chimica Acta, 1139: 198–221.
  • Haghighi B., Gorton L., Ruzgas T., Jönsson L.J. 2003. Characterization of graphite electrodes modified with laccase from trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta, 487 (1): 3–14.
  • Akyilmaz E., Turemis M., Yasa I. 2011. Voltammetric determination of epinephrine by white rot fungi (phanerochaete chrysosporium me446) cells based microbial biosensor. Biosensors and Bioelectronics, 26 (5): 2590–2594.
  • Leite O.D., Lupetti K.O., Fatibello-Filho O., Vieira I.C., Barbosa A. de M. 2003. Synergic effect studies of the bi-enzymatic system laccaseperoxidase in a voltammetric biosensor for catecholamines. Talanta, 59 (5): 889–896.
  • Tuncay D., Yagar H. 2020. Decolorization of reactive blue-19 textile dye by boletus edulis laccase immobilized onto rice husks. International Journal of Environmental Science and Technology, 17 (6): 3177–3188.
  • Silva L.M.C., Salgado A.M., Coelho M.A.Z. 2010. Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development. Environmental Technology, 31 (6): 611–616.
  • Zhang G.Q., Wang Y.F., Zhang X.Q., Ng T.B., Wang H.X. 2010. Purification and characterization of a novel laccase from the edible mushroom clitocybe maxima. Process Biochemistry, 45 (5): 627–633.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1–2): 248–254.
  • Shin K.S., Lee Y.J. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete coriolus hirsutus. Archives of Biochemistry and Biophysics, 384 (1): 109–115.
  • Wang H.X., Ng T.B. 2006. Purification of a laccase from fruiting bodies of the mushroom pleurotus eryngii. Applied Microbiology and Biotechnology, 69 (5): 521–525.
  • Baltierra-Trejo E., Márquez-Benavides L., Sánchez-Yáñez J.M. 2015. Inconsistencies and ambiguities in calculating enzyme activity: the case of laccase. Journal of Microbiological Methods, 119: 126–131.
  • Moressi M.B., Zon A., Fernández H., Rivas G., Solis V. 1999. Amperometric quantification of alternaria mycotoxins with a mushroom tyrosinase modified carbon paste electrode. Electrochemistry Communications, 1 (10): 472–476.
  • Kozan J.V.B., Silva R.P., Serrano S.H.P., Lima A.W.O., Angnes L. 2007. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (cocus nucifera l.) fibers. Analytica Chimica Acta, 591 (2): 200–207.
  • Anik Ü., Çevik S. 2009. Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchimica Acta, 166 (3–4): 209–213.
  • Ozcan H.M., Sagiroglu A. 2014. Fresh broad (vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds. Artificial Cells, Nanomedicine and Biotechnology, 42 (4): 256–261.
  • Odaci D., Timur S., Telefoncu A. 2008. Bacterial sensors based on chitosan matrices. Sensors and Actuators, B: Chemical, 134 (1): 89–94.
  • Lemieszek M.K., Nunes F.M., Marques G., Rzeski W. 2019. Cantharellus cibarius branched mannans inhibits colon cancer cells growth by interfering with signals transduction in nf-ĸb pathway. International Journal of Biological Macromolecules, 134: 770–780.
  • Wang F., Hu J.H., Guo C., Liu C.Z. 2014. Enhanced laccase production by trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresource Technology, 166: 602–605.
  • Lebrun J.D., Demont-Caulet N., Cheviron N., Laval K., Trinsoutrot-Gattin I., Mougin C. 2011. Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: a study of enzymatic system in trametes versicolor. Chemosphere, 82 (3): 340–345.
  • Pandey N., Budhathoki U. 2007. Protein determination through bradford’s method of nepalese mushroom. Scientific World, 5 (5): 85–88.
  • Tong P., Hong Y., Xiao Y., Zhang M., Tu X., Cui T. 2007. High production of laccase by a new basidiomycete, trametes sp. Biotechnology Letters, 29 (2): 295–301.
  • Xiao Y.Z., Chen Q., Hang J., Shi Y.Y., Wu J., Hong Y.Z., Wang Y.P. 2004. Selective induction, purification and characterization of a laccase isozyme from the basidiomycete trametes sp. ah28-2. Mycologia, 96 (1): 26–35.
  • Moon-Jeong Han;, Hyoung-Tae Choi;, Hong-Gyu Song 2005. Purification and characterization of laccase from the white rot fungus trametes versicolor. Journal of Microbiology, 43 (6): 555–560.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Engin Asav 0000-0002-6232-3388

Yayımlanma Tarihi 17 Eylül 2021
Gönderilme Tarihi 25 Haziran 2021
Kabul Tarihi 13 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE E. Asav, “Bazı Mantar Türlerinin Lakkaz Aktivitelerinin Kıyaslanması ve Clytocibe nebularis Türünün Biyosensör Sistemlerine Uygulanabilirliğinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 3, ss. 911–919, 2021, doi: 10.17798/bitlisfen.957370.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr