Araştırma Makalesi
BibTex RIS Kaynak Göster

Karma Lif Takviyeli KYB Karışımlarının İşlenebilirlik ve Mühendislik Özelliklerinin Araştırılması

Yıl 2022, , 400 - 410, 30.06.2022
https://doi.org/10.17798/bitlisfen.984473

Öz

Bu çalışmada, benzer işlenebilirliğe sahip farklı boyut (makro ve mikro) ve narinlikteki çelik lif takviyeli kendiliğinden yerleşen beton (KYB) karışımların mühendislik ve işlenebilirlik özellikleri araştırılmıştır. Bu amaçla, lifsiz, sadece makro lif ve karma lif içeren KYB olmak üzere toplamda üç adet karışım tasarlanmıştır. Lifli KYB karışımları, EFNARC (2002) komitesi tarafından önerilen kriterlere göre mümkün olan benzer işlenebilirlik esas alınarak elde edilmiştir. Bu sebeple, çökme-yayılma, t500 ve J-halkası işlenebilirlik testleri yapılmıştır. Elde edilen lifli KYB karışımlarından 3, 28 ve 90 günlük basınç, yarmada çekme ve eğilmede çekme dayanımlarının belirlenmesi için numuneler hazırlanmış ve standartlara uygun şekilde test edilmiştir. Sonuç olarak, karışıma hem tekli hem de karma lif ilave edilmesi, karışımların işlenebilirlik özelliklerini olumsuz etkilemiştir. Bunun yanında, KYB karışımlarına narinliği 87 olan düz mikro çelik liflerin ilave edilmesinin basınç ve yarmada çekme dayanımlarında, narinliği 65 olan kancalı uçlu makro çelik liflerin ilave edilmesinin ise eğilmede çekme dayanımı değerlerinde olumlu bir etkiye sahip olduğu bulunmuştur.

Destekleyen Kurum

İnönü Üniversitesi ve TÜBİTAK

Proje Numarası

FYL-2020-2298 ve MAG-121M024

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 1002 Hızlı destek Programı (MAG-121M024) ve İnönü Üniversitesi Bilimsel Araştırma Projesi Birimi (Proje numarası: FYL-2020-2298) tarafından desteklenmiştir. Verdikleri finansal destekten ötürü teşekkür ederiz.

Kaynakça

  • [1] Okamura, H. (1997). Self-compacting high-performance concrete. Concrete international, 19(7), 50-54
  • [2] Nehdi, M., Pardhan, M. and Koshowski, S., 2004. Durability of selfconsolidating concrete incorporating high-volume replacement composite cements, Cement and Concrete Research, 34, 2103– 2112.
  • [3] EFNARC, 2002. Specification and guidelines for self-compacting concrete. European project group, UK.
  • [4] Hannant, D. J., 1987.Fiber cements and fiber concrete. Chichester, UK, Wiley.
  • [5] Ding, Y.N., You, Z., Jalali, S., 2010. “Hybrid fiber influence on strength and toughness of RC beams”. Compos Struct, 92, 2083–9.
  • [6] Sukontasukkul, P., Jamsawang, P.,2012. Use of steel and polypropylene fibers to improve flexural performance of deep soil–cement column. Constr Build Mater, 29, 201–5.
  • [7] Mindess, S. (2007). Thirty years of fibre reinforced concrete research at the UWM British, Colombia.
  • [8] Rossi P, Acker P, Malier Y. “Effect of steel fibres at two different stages: the material and the structure”. Materials and Structures, 20(6), 436-439, 1987.
  • [9] Mobasher B, Li Cheng Y. “Mechanical properties of hybrid cement based composites”. American Concrete Institute Materials Journal, 93(3), 284-92, 1996.
  • [10] Türk K. ve Kına C., "Çimento Esaslı Kompozitlerde Karma Lif Kullanımı", Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 671-678, 2017.
  • [11] Türk K., Atalay E., 2019. "The Properties Of Hybrid Fiber Reinforced Self-Compacting Concrete With Different Type Micro Fiber", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.1040-1051.
  • [12] Türk K., Başsürücü M., 2019. "Effect of Curing Conditions on the Mechanical Properties of Conventional Concrete with Hybrid Fiber", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.244-257.
  • [13] Turk, K., Oztekin, E., & Kina, C. (2019). Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion. European Journal of Environmental and Civil Engineering, 0(0), 1–14. https://doi.org/10.1080/19648189.2019.1686069
  • [14] Türk K., Dönmez, İ., 2019. "Some Properties Of Hybrid Fiber Reinforced Self-Compacting Concrete Containing Binary And Ternary Mineral Admixture", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.1052-1065
  • [15] EFNARC, 2005. “European Guidelines for Self-Compacting Concrete”, Specification and Production and Use, Association
  • [16] ASTM C39, 2018. “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, ASTM International, West Conshohocken, PA.
  • [17] ASTM C496 / C496M-17, 2017, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression”, ASTM International, West Conshohocken, PA.
  • [18] ASTM C1609 / C1609M-19, 2019. “Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete”, ASTM International, West Conshohocken, PA.
  • [19] JSCE (1984), Method of Test for Flexural Strength and Flexural Toughness of Fibre Reinforced Concrete, JSCE Standard SF-4.
  • [20] Pereira de Oliveira, L. A.,Castro Gomes, J. P., Bernardo, M. M. M. & Ramos, L. F. A. (2013). Evaluation of dry mortar ratio as mix design parameter for steel fibre reinforcedself compacting concrete. Construction and Building Materials, 40, 642- 649.
  • [21] Liu, X., Wu, T., Yang, X., & Wei, H. (2019). Properties of self-compacting lightweight concrete reinforced with steel and polypropylene fibers. Construction and Building Materials, 226, 388–398. https://doi.org/10.1016/j.conbuildmat.2019.07.306
  • [22] Ghanem, H., & Obeid, Y. (2015). The Effect of Steel Fibers on the Rhyological and Mechanical Properties of Self Compacting Concrete. European Scientific Journal, 11(21), 1857–7881.
  • [23] Akcay B, Tasdemir MA (2012) Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Constr Build Mater 28:287–293.
  • [24] Yu R, Spiesz P, Brouwers HJH (2014) Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cem Concrete Res 56:29–39.
  • [25] Nyström U, Gylltoft K. Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete. Int J Impact Eng 2011;38:95–105.
  • [26] Sarı M. (2013). Farklı Tipteki Liflerin Betonun Mekanik Davranışına Etkisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul
  • [27] Haddadou, N., Chaid, R., Ghernouti, Y., & Adjou, N. (2014). The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete. J. Build. Mater. Struct, 1(June 2020), 65–76. https://doi.org/10.5281/zenodo.241964
  • [28] Sahmaran, M., Yurtseven, A., & Ozgur Yaman, I. (2005). Workability of hybrid fiber reinforced self compacting concrete. Building and Environment, 40(12), 1672–1677. https://doi.org/10.1016/j.buildenv.2004.12.014
  • [29] Hsiea, M., Tu, C. and Song, P.S., Mechanical properties of polypropylene hybrid fiber-reinforced concrete. 551 Materials Science and Engineering A 494 (2008), 153–157, 2017. 552
  • [30] Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), “Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres”, Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
  • [31] Blunt, J. and Ostertag, C. P., Performance-Based Approach for the Design of a Deflection Hardened Hybrid 553 Fiber-Reinforced Concrete. Journal Of Engıneerıng Mechanıcs.135:978-986, 2009.
  • [32] Bentur A., Mindess, S. (1990). Fiber Reinforced Cementitious Composites. 1st ed. London and New York, Elsevier Applied Science
  • [33] Aslani, F., Hamidi, F., Valizadeh, A., & Dang, A. T. N. (2020). High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties. Construction and Building Materials, 232, 117230. https://doi.org/10.1016/j.conbuildmat.2019.117230
  • [34] Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. H. and Hosseinpour, I., The effect of polyproplene fibers 524 on the properties of fresh and hardened lightweight self- compacting concrete. Construction and Building 525 Materials, 25(1), 351-358, 2011
  • [35] Li, J.J., Wan, C.J., Niu, J.G., Wu, L.F. and Wu, Y.C. (2017), “Investigation on flexural toughness evaluation method of steel fiber reinforced lightweight aggregate concrete”, Constr. Build. Mater., 131, 449-458. 268 https://doi.org/10.1016/j.conbuildmat.2016.11.101.
  • [36] Rashiddadash P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice”, Constr. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087.
  • [37] Pakravan HR, Latifi M, Jamshidi M Hybrid short fiber reinforcement system in concrete: A review. 559 Construction and Building Materials 142:280–294,2017
  • [38] Turk K., Kina C. and Oztekin E., “Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC”, Advances in Concrete Construction, 10(3), pp. 257-269, 2020. DOI: 10.12989/acc.2020.10.3.257
  • [39] Turk K., Bassurucu M. and Bitkin RE., “Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber”, Construction and Building Materials, 266, PartA, (10 January 2020), 120944, 2021. https://doi.org/10.1016/j.conbuildmat.2020.120944
  • [40] Li, J.J., Wan, C.J., Niu, J.G., Wu, L.F. and Wu, Y.C. (2017), “Investigation on flexural toughness evaluation method of steel fiber reinforced lightweight aggregate concrete”, Constr. Build. Mater., 131, 449-458.
  • [41] Pajak M. and Ponikiewski T. (2013), “Flexural behavior of self-compacting concrete reinforced with different types of steel fibers”, Constr. Build. Mater., 47, 397-408. https://doi.org/10.1016/j.conbuildmat.2013.05.072.
  • [42] Wu, Z., Shi, C., He, W. (2016), “Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete”, Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
  • [43] Bitkin, R.E. 2020. “Basınç Donatısız KYB’den Üretilmiş Kirişlerin Eğilme Performansına Karma Lif Takviyesinin Etkisi” Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya.
  • [44] Wu, Z., Shi, C., He, W., Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14

Investigation of Workability and Engineering Properties of Hybrid Fiber Reinforced SCC Mixtures

Yıl 2022, , 400 - 410, 30.06.2022
https://doi.org/10.17798/bitlisfen.984473

Öz

In this study, the engineering and workability properties of different size (macro and micro) and aspect/ratio steel fiber reinforced self-compacting concrete (SCC) mixtures with similar workability was investigated. For this purpose, a total of three SCC mixtures were designed: control with no fiber, only macro and hybrid fiber reinforced SCC. Based on possible similar workability, fiber reinforced SCC mixtures were obtained according to criteria recommended by the EFNARC (2002) committee. Therefore, slump-flow, t500 and J-ring workability tests were performed. Specimens obtained from SCC mixtures with fiber were prepared for 3, 28 and 90-day and compressive, splitting tensile and flexural tensile strengths tests were carried out. In conclusion, the inclusion of both single and hybrid fiber to SCC mixtures negatively affected the workability properties of the mixtures. Besides, it was found that the addition of straight micro steel fibers with an aspect ratio of 87 to mixtures had a positive effect on the compressive and splitting tensile strengths while the addition of hook-end macro steel fibers with an aspect ratio of 65 had a positive effect on the flexural tensile strength values.

Proje Numarası

FYL-2020-2298 ve MAG-121M024

Kaynakça

  • [1] Okamura, H. (1997). Self-compacting high-performance concrete. Concrete international, 19(7), 50-54
  • [2] Nehdi, M., Pardhan, M. and Koshowski, S., 2004. Durability of selfconsolidating concrete incorporating high-volume replacement composite cements, Cement and Concrete Research, 34, 2103– 2112.
  • [3] EFNARC, 2002. Specification and guidelines for self-compacting concrete. European project group, UK.
  • [4] Hannant, D. J., 1987.Fiber cements and fiber concrete. Chichester, UK, Wiley.
  • [5] Ding, Y.N., You, Z., Jalali, S., 2010. “Hybrid fiber influence on strength and toughness of RC beams”. Compos Struct, 92, 2083–9.
  • [6] Sukontasukkul, P., Jamsawang, P.,2012. Use of steel and polypropylene fibers to improve flexural performance of deep soil–cement column. Constr Build Mater, 29, 201–5.
  • [7] Mindess, S. (2007). Thirty years of fibre reinforced concrete research at the UWM British, Colombia.
  • [8] Rossi P, Acker P, Malier Y. “Effect of steel fibres at two different stages: the material and the structure”. Materials and Structures, 20(6), 436-439, 1987.
  • [9] Mobasher B, Li Cheng Y. “Mechanical properties of hybrid cement based composites”. American Concrete Institute Materials Journal, 93(3), 284-92, 1996.
  • [10] Türk K. ve Kına C., "Çimento Esaslı Kompozitlerde Karma Lif Kullanımı", Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 671-678, 2017.
  • [11] Türk K., Atalay E., 2019. "The Properties Of Hybrid Fiber Reinforced Self-Compacting Concrete With Different Type Micro Fiber", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.1040-1051.
  • [12] Türk K., Başsürücü M., 2019. "Effect of Curing Conditions on the Mechanical Properties of Conventional Concrete with Hybrid Fiber", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.244-257.
  • [13] Turk, K., Oztekin, E., & Kina, C. (2019). Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion. European Journal of Environmental and Civil Engineering, 0(0), 1–14. https://doi.org/10.1080/19648189.2019.1686069
  • [14] Türk K., Dönmez, İ., 2019. "Some Properties Of Hybrid Fiber Reinforced Self-Compacting Concrete Containing Binary And Ternary Mineral Admixture", 4th International Energy Engineering Congress, Gaziantep, Türkiye, 24-25 Ekim 2019, pp.1052-1065
  • [15] EFNARC, 2005. “European Guidelines for Self-Compacting Concrete”, Specification and Production and Use, Association
  • [16] ASTM C39, 2018. “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, ASTM International, West Conshohocken, PA.
  • [17] ASTM C496 / C496M-17, 2017, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression”, ASTM International, West Conshohocken, PA.
  • [18] ASTM C1609 / C1609M-19, 2019. “Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete”, ASTM International, West Conshohocken, PA.
  • [19] JSCE (1984), Method of Test for Flexural Strength and Flexural Toughness of Fibre Reinforced Concrete, JSCE Standard SF-4.
  • [20] Pereira de Oliveira, L. A.,Castro Gomes, J. P., Bernardo, M. M. M. & Ramos, L. F. A. (2013). Evaluation of dry mortar ratio as mix design parameter for steel fibre reinforcedself compacting concrete. Construction and Building Materials, 40, 642- 649.
  • [21] Liu, X., Wu, T., Yang, X., & Wei, H. (2019). Properties of self-compacting lightweight concrete reinforced with steel and polypropylene fibers. Construction and Building Materials, 226, 388–398. https://doi.org/10.1016/j.conbuildmat.2019.07.306
  • [22] Ghanem, H., & Obeid, Y. (2015). The Effect of Steel Fibers on the Rhyological and Mechanical Properties of Self Compacting Concrete. European Scientific Journal, 11(21), 1857–7881.
  • [23] Akcay B, Tasdemir MA (2012) Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Constr Build Mater 28:287–293.
  • [24] Yu R, Spiesz P, Brouwers HJH (2014) Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cem Concrete Res 56:29–39.
  • [25] Nyström U, Gylltoft K. Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete. Int J Impact Eng 2011;38:95–105.
  • [26] Sarı M. (2013). Farklı Tipteki Liflerin Betonun Mekanik Davranışına Etkisi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul
  • [27] Haddadou, N., Chaid, R., Ghernouti, Y., & Adjou, N. (2014). The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete. J. Build. Mater. Struct, 1(June 2020), 65–76. https://doi.org/10.5281/zenodo.241964
  • [28] Sahmaran, M., Yurtseven, A., & Ozgur Yaman, I. (2005). Workability of hybrid fiber reinforced self compacting concrete. Building and Environment, 40(12), 1672–1677. https://doi.org/10.1016/j.buildenv.2004.12.014
  • [29] Hsiea, M., Tu, C. and Song, P.S., Mechanical properties of polypropylene hybrid fiber-reinforced concrete. 551 Materials Science and Engineering A 494 (2008), 153–157, 2017. 552
  • [30] Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), “Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres”, Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
  • [31] Blunt, J. and Ostertag, C. P., Performance-Based Approach for the Design of a Deflection Hardened Hybrid 553 Fiber-Reinforced Concrete. Journal Of Engıneerıng Mechanıcs.135:978-986, 2009.
  • [32] Bentur A., Mindess, S. (1990). Fiber Reinforced Cementitious Composites. 1st ed. London and New York, Elsevier Applied Science
  • [33] Aslani, F., Hamidi, F., Valizadeh, A., & Dang, A. T. N. (2020). High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties. Construction and Building Materials, 232, 117230. https://doi.org/10.1016/j.conbuildmat.2019.117230
  • [34] Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. H. and Hosseinpour, I., The effect of polyproplene fibers 524 on the properties of fresh and hardened lightweight self- compacting concrete. Construction and Building 525 Materials, 25(1), 351-358, 2011
  • [35] Li, J.J., Wan, C.J., Niu, J.G., Wu, L.F. and Wu, Y.C. (2017), “Investigation on flexural toughness evaluation method of steel fiber reinforced lightweight aggregate concrete”, Constr. Build. Mater., 131, 449-458. 268 https://doi.org/10.1016/j.conbuildmat.2016.11.101.
  • [36] Rashiddadash P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice”, Constr. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087.
  • [37] Pakravan HR, Latifi M, Jamshidi M Hybrid short fiber reinforcement system in concrete: A review. 559 Construction and Building Materials 142:280–294,2017
  • [38] Turk K., Kina C. and Oztekin E., “Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC”, Advances in Concrete Construction, 10(3), pp. 257-269, 2020. DOI: 10.12989/acc.2020.10.3.257
  • [39] Turk K., Bassurucu M. and Bitkin RE., “Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber”, Construction and Building Materials, 266, PartA, (10 January 2020), 120944, 2021. https://doi.org/10.1016/j.conbuildmat.2020.120944
  • [40] Li, J.J., Wan, C.J., Niu, J.G., Wu, L.F. and Wu, Y.C. (2017), “Investigation on flexural toughness evaluation method of steel fiber reinforced lightweight aggregate concrete”, Constr. Build. Mater., 131, 449-458.
  • [41] Pajak M. and Ponikiewski T. (2013), “Flexural behavior of self-compacting concrete reinforced with different types of steel fibers”, Constr. Build. Mater., 47, 397-408. https://doi.org/10.1016/j.conbuildmat.2013.05.072.
  • [42] Wu, Z., Shi, C., He, W. (2016), “Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete”, Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
  • [43] Bitkin, R.E. 2020. “Basınç Donatısız KYB’den Üretilmiş Kirişlerin Eğilme Performansına Karma Lif Takviyesinin Etkisi” Yüksek Lisans Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya.
  • [44] Wu, Z., Shi, C., He, W., Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Kazım Türk 0000-0002-6314-9465

Metin Katlav 0000-0001-9093-7195

Paki Turgut 0000-0002-3711-4605

Proje Numarası FYL-2020-2298 ve MAG-121M024
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 18 Ağustos 2021
Kabul Tarihi 6 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE K. Türk, M. Katlav, ve P. Turgut, “Karma Lif Takviyeli KYB Karışımlarının İşlenebilirlik ve Mühendislik Özelliklerinin Araştırılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 2, ss. 400–410, 2022, doi: 10.17798/bitlisfen.984473.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr