Araştırma Makalesi
BibTex RIS Kaynak Göster

Ribbon Çatısına göre Roller Coaster Yüzeyinin Karakterizasyonları

Yıl 2018, Cilt: 7 Sayı: 2, 390 - 398, 28.12.2018
https://doi.org/10.17798/bitlisfen.432007

Öz

Roller coasterlar trenin; virajların, halkaların, tepelerin ve vadilerin etrafında hareket ederken kinetik ve potansiyel enerjinin etkileşimi ile klasik enerji dönüşümlerine  örnektirler. Bir roller coaster pisti, uzayda hareket eden bir parçacığın uzayda verilen bir eğri üzerinde kalacaktır. Bu çalışmada,  3-boyutlı Öklid uzayında Ribbon çatısıyla -Roller Coaster yüzeyi araştırıldı. Dahası, ℜ-Roller Coaster yüzeyinin 1. ve 2. Temel formun katsayısı, ortalama eğriliği, Gauss eğrilikleri incelemiştir. Ayrıca, ℜ-Roller Coaster yüzeylerinin paralel yüzeyleri elde edildi. Son olarak , bir ℜ -Roller Coaster yüzeyinin elastik olmayan akışına karşılık gelen denklemler bulundu.


Kaynakça

  • Referans1 Bohr J., Markvorsen S. 2013. Ribbon Crystals, Plos one, 8 (10).
  • Referans2 Baş S., Körpınar T., Sarıaydın M. Talat 2017. A New Approach Inextensible Flows of Curves with Ribbon Frame, Prespacetime Journal, vol 8, no. 12, pp. 1350-1356.Referans3 Carmo P. 1976. Differential Geometry of Curves and Surfaces, Pearson Education.
  • Referans4 Cui L., Wang D., Dai J. S 2009. Kinematic Geometry of Circular Surfaces With a Fixed Radius Based on Euclidean Invariants, Journal of Mechanical Design, vol. 131.
  • Referans5 Bükcü B., Karacan M. K. 2007. An alternative moving frame for tubular surfaces around timelike curves in the Minkowski 3-space, Balk. J. Geom. Appl., vol. 12, pp. 73-80.
  • Referans6 Dogan F., Yaylı Y. 2011. On the Curvatures of Tubular Surfaces with Bishop Frame, Commun. Fac. Sci.Univ. Ank. Series A1, vol. 60, no. 1, pp. 59-69.
  • Referans7 Hollis S. Mathematica(l) Roller Coasters, Department of Mathematics Armstrong Atlantic State University.
  • Referans8 Körpınar T., Baş S. 2013. On Characterization of - Focal Curves In , Bol. Soc. Paran. Mat., vol. 31, no. 1, pp. 175-178.
  • Referans9 Körpınar T., Turhan E. 2012. On characterization of canal surfaces in terms of biharmonic slant helices according to Bishop frame in Heisenberg group Heis , J. Math. Anal. Appl., vol. 382, pp. 57-65.
  • Referans10 Körpınar T, Turhan E. 2014. Time-Canal Surfaces Around Biharmonic Particles and Its Lorentz Transformations in Heisenberg space-time, Int. J. Theor. Phys., vol. 53, pp. 1502-1520.
  • Referans11 Karacan M.K., Es H., Yaylı Y. 2006. Singuler Points of Tubular Surface in Minkowski Surfaces, Sarajevo J. Math., vol. 2, no. 14, pp. 73-82.
  • Referans12 Izumiya S., Saji S., Takeuchi N. 2005. Circular surfaces, Commun Advances in Geometry, vol. 7, pp. 295-313.
  • Referans13 Kwon D. Y. , Park FC., Chi DP. 2005. Inextensible flows of curves and developable surfaces, Appl. Math. Lett., vol. 18, pp. 1156-1162.
  • Referans14 Lu W., Pottmann H. 1996. Pipe Surfaces With Rational Spine Curve Are Rational, Comput. Aided Geom. Des., vol. 13, pp. 621-628.
  • Referans15 Z. Xu, R. Feng and J.G. Sun, Analytic and algebraic properties of canal surfaces, Journal of Computational and Applied Mathematics, vol. 195, pp. 220-228, 2006.

Characterizations of Roller Coaster Surface According to Ribbon Frame

Yıl 2018, Cilt: 7 Sayı: 2, 390 - 398, 28.12.2018
https://doi.org/10.17798/bitlisfen.432007

Öz

Roller coasters
are usual examples of energy transformation, with an interaction of kinetic and
potential energy as the train moves surrounding the curves, loops, hills and
valleys of the path.. A roller coaster path so that a particle moving in space
will stay on a given curve in space. The roller coaster surface is a special
type of spherical surfaces. In this study, 
ℜ-Roller
Coaster surfaces with Ribbon frame is investigate
in Euclidean 3-space. Moreover, the Gaussian curvature, mean curvature, first
and second fundamental form of coefficients of Roller Coaster surfaces of are
examined. Then, the parallel surfaces of ℜ-Roller Coaster surfaces of are obtained. Finally, we
derive the
related equations for
the inextensible flow of a ℜ -Roller Coaster surface.

Kaynakça

  • Referans1 Bohr J., Markvorsen S. 2013. Ribbon Crystals, Plos one, 8 (10).
  • Referans2 Baş S., Körpınar T., Sarıaydın M. Talat 2017. A New Approach Inextensible Flows of Curves with Ribbon Frame, Prespacetime Journal, vol 8, no. 12, pp. 1350-1356.Referans3 Carmo P. 1976. Differential Geometry of Curves and Surfaces, Pearson Education.
  • Referans4 Cui L., Wang D., Dai J. S 2009. Kinematic Geometry of Circular Surfaces With a Fixed Radius Based on Euclidean Invariants, Journal of Mechanical Design, vol. 131.
  • Referans5 Bükcü B., Karacan M. K. 2007. An alternative moving frame for tubular surfaces around timelike curves in the Minkowski 3-space, Balk. J. Geom. Appl., vol. 12, pp. 73-80.
  • Referans6 Dogan F., Yaylı Y. 2011. On the Curvatures of Tubular Surfaces with Bishop Frame, Commun. Fac. Sci.Univ. Ank. Series A1, vol. 60, no. 1, pp. 59-69.
  • Referans7 Hollis S. Mathematica(l) Roller Coasters, Department of Mathematics Armstrong Atlantic State University.
  • Referans8 Körpınar T., Baş S. 2013. On Characterization of - Focal Curves In , Bol. Soc. Paran. Mat., vol. 31, no. 1, pp. 175-178.
  • Referans9 Körpınar T., Turhan E. 2012. On characterization of canal surfaces in terms of biharmonic slant helices according to Bishop frame in Heisenberg group Heis , J. Math. Anal. Appl., vol. 382, pp. 57-65.
  • Referans10 Körpınar T, Turhan E. 2014. Time-Canal Surfaces Around Biharmonic Particles and Its Lorentz Transformations in Heisenberg space-time, Int. J. Theor. Phys., vol. 53, pp. 1502-1520.
  • Referans11 Karacan M.K., Es H., Yaylı Y. 2006. Singuler Points of Tubular Surface in Minkowski Surfaces, Sarajevo J. Math., vol. 2, no. 14, pp. 73-82.
  • Referans12 Izumiya S., Saji S., Takeuchi N. 2005. Circular surfaces, Commun Advances in Geometry, vol. 7, pp. 295-313.
  • Referans13 Kwon D. Y. , Park FC., Chi DP. 2005. Inextensible flows of curves and developable surfaces, Appl. Math. Lett., vol. 18, pp. 1156-1162.
  • Referans14 Lu W., Pottmann H. 1996. Pipe Surfaces With Rational Spine Curve Are Rational, Comput. Aided Geom. Des., vol. 13, pp. 621-628.
  • Referans15 Z. Xu, R. Feng and J.G. Sun, Analytic and algebraic properties of canal surfaces, Journal of Computational and Applied Mathematics, vol. 195, pp. 220-228, 2006.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Selçuk Baş

Yayımlanma Tarihi 28 Aralık 2018
Gönderilme Tarihi 8 Haziran 2018
Kabul Tarihi 23 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

IEEE S. Baş, “Characterizations of Roller Coaster Surface According to Ribbon Frame”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 7, sy. 2, ss. 390–398, 2018, doi: 10.17798/bitlisfen.432007.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr