Araştırma Makalesi
BibTex RIS Kaynak Göster

Gauss (𝒔, 𝒕)-Pell ve Pell-Lucas Dizileri ve Matris Gösterimleri

Yıl 2019, Cilt: 8 Sayı: 1, 46 - 59, 12.03.2019
https://doi.org/10.17798/bitlisfen.470181

Öz

Bu
çalışmada,
Gauss (s,t)-Pell
ve Gauss
(s,t)-Pell-Lucas
dizilerini tanımladık. Sonra, bu dizileri kullanarak Gauss (s,t)
-Pell
ve Gauss (s,t)
-Pell-Lucas
matris dizilerini tanımladık. Daha sonra, bu dizilerin üreteç fonksiyonlarını,
Binet formüllerini ve bazı toplam formüllerini verdik. Son olarak,
Gauss (s,t)-Pell ve Gauss (s,t)-Pell-Lucas matris dizileri arasında bazı ilişkileri elde
ettik.

Kaynakça

  • Benjamin A.T., Plott S.S., Sellers J.A. 2008. Tiling Proofs of Recent Sum Identities Involving Pell Numbers, Annals of Combinatorics 12, 271-278.
  • Berzsenyi G. 1977. Gaussian Fibonacci Numbers. Fibonacci Quarterly 15(3): 233-236.
  • Civciv H., Türkmen R. 2008. Notes on the (s,t)-Lucas and Lucas Matrix Sequences, Ars Combinatoria 89, 271–285.
  • Civciv H., Türkmen R. 2008. On the (s,t)-Fibonacci and Fibonacci Matrix Sequences, Ars Combinatoria 87, 161–173.
  • Good J.J. 1981. Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio, Fibonacci Quaterly 31 (1): 7-20.
  • Gulec H.H., Taskara N. 2012. On the (s,t)Pell and (s,t)-Pell-Lucas Sequences and Their Matrix Representations, Applied Mathematics Letters 25(10): 1554-1559.
  • Halıcı S., Öz S. 2016. On Some Gaussian Pell and Pell-Lucas Numbers, Ordu Univ. Science and Technology Journal 6(1): 8-18.
  • Harman C.J. 1981. Complex Fibonacci Numbers, Fibonacci Quaterly 19(1): 82-86.
  • Horadam A.F. 1963. Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly 70, 289-291.
  • Jordan J.H. 1965. Gaussian Fibonacci and Lucas Numbers, Fibonacci Quarterly 3, 315-318.
  • Koshy T. 2001. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY.
  • Pektaş P. 2015. (s,t)-Gauss Fibonacci ve Lucas Sayılarının Kombinatorial Özellikleri Üzerine. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi, 53s, Denizli.
  • Pethe S., Horadam A.F. 1986. Generalized Gaussian Fibonacci Numbers, Bull. Austral. Math. Soc. 33(1): 37-48.
  • Stakhov A., Rozin B. 2006. Theory of Binet Formulas for Fibonacci and Lucas p-numbers, Solitions & Fractals 27(5): 1162-1177.
  • Taskara N., Uslu K., Guleç H.H. 2010. On the Properties of Lucas Numbers With Binomial Coefficients, Applied Mathematics Letters 23(1): 68-72.
  • Yagmur T., Karaaslan N. 2018. Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence, Aksaray J. Sci. Eng. 2(1): 63-72.

Gaussian (𝒔, 𝒕)-Pell and Pell-Lucas Sequences and Their Matrix Representations

Yıl 2019, Cilt: 8 Sayı: 1, 46 - 59, 12.03.2019
https://doi.org/10.17798/bitlisfen.470181

Öz

In this study, we define the Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas sequences. Then, by using
these sequences we define Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas matrix sequences. Thereafter,
we give generating functions, Binet’s formulas and some summation formulas of
these sequences. Finally, we obtain some 
relationships between Gaussian (s,t)-Pell and Gaussian (s,t)-Pell-Lucas matrix sequences.

Kaynakça

  • Benjamin A.T., Plott S.S., Sellers J.A. 2008. Tiling Proofs of Recent Sum Identities Involving Pell Numbers, Annals of Combinatorics 12, 271-278.
  • Berzsenyi G. 1977. Gaussian Fibonacci Numbers. Fibonacci Quarterly 15(3): 233-236.
  • Civciv H., Türkmen R. 2008. Notes on the (s,t)-Lucas and Lucas Matrix Sequences, Ars Combinatoria 89, 271–285.
  • Civciv H., Türkmen R. 2008. On the (s,t)-Fibonacci and Fibonacci Matrix Sequences, Ars Combinatoria 87, 161–173.
  • Good J.J. 1981. Complex Fibonacci and Lucas Numbers, Continued Fractions, and the Square Root of the Golden Ratio, Fibonacci Quaterly 31 (1): 7-20.
  • Gulec H.H., Taskara N. 2012. On the (s,t)Pell and (s,t)-Pell-Lucas Sequences and Their Matrix Representations, Applied Mathematics Letters 25(10): 1554-1559.
  • Halıcı S., Öz S. 2016. On Some Gaussian Pell and Pell-Lucas Numbers, Ordu Univ. Science and Technology Journal 6(1): 8-18.
  • Harman C.J. 1981. Complex Fibonacci Numbers, Fibonacci Quaterly 19(1): 82-86.
  • Horadam A.F. 1963. Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly 70, 289-291.
  • Jordan J.H. 1965. Gaussian Fibonacci and Lucas Numbers, Fibonacci Quarterly 3, 315-318.
  • Koshy T. 2001. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY.
  • Pektaş P. 2015. (s,t)-Gauss Fibonacci ve Lucas Sayılarının Kombinatorial Özellikleri Üzerine. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi, 53s, Denizli.
  • Pethe S., Horadam A.F. 1986. Generalized Gaussian Fibonacci Numbers, Bull. Austral. Math. Soc. 33(1): 37-48.
  • Stakhov A., Rozin B. 2006. Theory of Binet Formulas for Fibonacci and Lucas p-numbers, Solitions & Fractals 27(5): 1162-1177.
  • Taskara N., Uslu K., Guleç H.H. 2010. On the Properties of Lucas Numbers With Binomial Coefficients, Applied Mathematics Letters 23(1): 68-72.
  • Yagmur T., Karaaslan N. 2018. Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence, Aksaray J. Sci. Eng. 2(1): 63-72.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nusret Karaaslan

Tülay Yağmur

Yayımlanma Tarihi 12 Mart 2019
Gönderilme Tarihi 13 Ekim 2018
Kabul Tarihi 5 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE N. Karaaslan ve T. Yağmur, “Gaussian (𝒔, 𝒕)-Pell and Pell-Lucas Sequences and Their Matrix Representations”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 1, ss. 46–59, 2019, doi: 10.17798/bitlisfen.470181.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr