Derleme
BibTex RIS Kaynak Göster

Kendi Kendini İyileştirebilen Mühendislik Seramikleri

Yıl 2020, Cilt: 9 Sayı: 4, 1854 - 1864, 25.12.2020
https://doi.org/10.17798/bitlisfen.690910

Öz

Yüksek sertlik ve aşınma direncine sahip olan mühendislik seramiklerini eşsiz kılan en önemli özelliği yüksek sıcaklık şartlarına olan dayanımlarıdır. Dolayısıyla bu malzemeler havacılık, uzay, otomotiv, elektronik ve enerji sektörleri gibi birçok alana hitap ederek oldukça geniş uygulama alanlarına sahiptirler. Mühendislik seramiklerinin işlevselliklerini daha da arttırabilmek için birçok yaklaşım geliştirilmiştir. Bunlardan en önemlisi seramiklerin kırılma tokluğunun iyileştirilmesidir. Ayrıca son yıllarda seramiğe yüksek sıcaklıkta kendi kendini iyileştirme özelliği kazandırılarak akıllı seramikler geliştirilmesine yönelik çalışmalar dikkat çekmektedir. Burada “kendini iyileştirme” ifadesinden kasıt; malzeme yüzeyinde kullanım esnasında veya öncesinde oluşan mikro çatlakların yine kullanım esnasında yüksek sıcaklıkta kendiliğinden onarılarak malzemenin yeniden mukavemet kazanması olayıdır. Mühendislik seramiklerinin yüksek sıcaklıkta kullanım esnasında kendiliğinden hasar alması çok karşılaşılan bir problem iken; geleneksel yöntemlerle bu hasarın anında ve sistemin çalışması sürecinde saptanması neredeyse imkansızdır. Dolayısı ile seramik malzemeye yüksek sıcaklıkta çalışma esnasında kendini iyileştirme özelliği kazandırmak bu malzemenin hizmet ömrünü ve kullanıldığı sistemin güvenliğini arttıracaktır. Bu çalışmada ilgili literatür ışığında seramiklerin kırılma tokluğunu arttırmaya yönelik mekanizmalar, kendini iyileştirebilen seramiklerin önemi, kendini iyileştirme mekanizması, bunların üretim yöntemi ve parametreleri, bileşimleri, mekanizmanın aktif hale gelmesi için gerekli olan sıcaklık değerleri, mikroyapı ve mekanik özelliklerindeki değişimler derlenerek sunulmuştur.

Destekleyen Kurum

Hakkari Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

FM2017BAP10

Kaynakça

  • 1. M. F. Ashby and D. R. H. Jones, “Chapter 17 - Ceramics,” in Engineering Materials 2 (Fourth Edition), Fourth Edi., M. F. Ashby and D. R. H. Jones, Eds. Boston: Butterworth-Heinemann, 2013, pp. 299–312.
  • 2. X. L. Shi et al., “Mechanical properties of hot-pressed Al2O3/SiC composites,” Mater. Sci. Eng. A, vol. 527, no. 18–19, pp. 4646–4649, 2010.
  • 3. P. Šajgalik, J. Dusza, and M. J. Hoffmann, “Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics,” J. Am. Ceram. Soc., vol. 78, no. 10, pp. 2619–2624, 1995.
  • 4. A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, “Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses,” Biomaterials, vol. 23, no. 3, pp. 937–945, 2002.
  • 5. M. H. Lewis and R. S. Dobedoe, “Creep of Ceramics,” in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, Eds. Oxford: Elsevier, 2002, pp. 1–7.
  • 6. D. B. Marshall and R. H. J. Hannink, “Ceramics: Transformation Toughening,” in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, Eds. Oxford: Elsevier, 2001, pp. 1113–1116.
  • 7. B. Yavas, F. Sahin, O. Yucel, and G. Goller, “Effect of particle size, heating rate and CNT addition on densification, microstructure and mechanical properties of B4C ceramics,” Ceram. Int., vol. 41, no. 7, pp. 8936–8944, 2015.
  • 8. G. A. Gogotsi, “Fracture toughness of ceramics and ceramic composites,” Ceram. Int., vol. 29, no. 7, pp. 777–784, 2003.
  • 9. B. C. Ocak, B. Yavas, I. Akin, F. Sahin, and G. Goller, “Spark plasma sintered ZrC-TiC-GNP composites: Solid solution formation and mechanical properties,” Ceram. Int., vol. 44, no. 2, pp. 2336–2344, 2018.
  • 10. V. Gopal and G. Manivasagam, “9 - Zirconia-alumina composite for orthopedic implant application,” in Applications of Nanocomposite Materials in Orthopedics, Inamuddin, A. M. Asiri, and A. Mohammad, Eds. Woodhead Publishing, 2019, pp. 201–219.
  • 11. W. Nakao, T. Koji, and A. Kotoji, “Self-healing of Surface Cracks in Structural Ceramics,” in Self-healing Materials Fundamentals, Design Strategies, and Applications, S. K. Ghosh, Ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp. 183–213.
  • 12. M. Madhan and G. Prabhakaran, “Self-healing Ability of Structural Ceramics – A Review,” in Trends in Intelligent Robotics, Automation, and Manufacturing, K. C. Ramanathan, Ed. Springer, 2012, pp. 466–474.
  • 13. P. Sihyun, T. Ahn, S. Kim, H. Kim, and K. Shim, “Processing Research Crack self-healing behavior in silicon carbide composite ceramics to secure structural integrity and improve economics,” vol. 16, pp. 114–131, 2015.
  • 14. F. Rebillat, “Advances in self- healing ceramic matrix composites,” in Advances in ceramic matrix composites, I. M. Low, Ed. Woodhead Publishing Limited, 2014, pp. 369–398.
  • 15. B. Aïssa, E. I. Haddad, and W. R. Jamroz, Eds., Self-healing Materials : Innovative Materials for Terrestrial and Space Applications. Smithers Rapra Technology, 2014.
  • 16. G. Wypych, Self-Healing Materials Principles & Technology, First Edit., vol. 1. ChemTec Publishing, 2017.
  • 17. T. E. EASLER, R. C. BRADT, and R. E. TRESSLER, “Strength Distributions of SiC Ceramics After Oxidation and Oxidation Under Load,” J. Am. Ceram. Soc., vol. 64, no. 12, pp. 731–734, 1981.
  • 18. Y. Ding, S. Dong, and Z. Huang, “Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering,” vol. 33, pp. 101–105, 2007.
  • 19. X. Meng, C. Xu, G. Xiao, M. Yi, and Y. Zhang, “Microstructure and anisotropy of mechanical properties of graphene nanoplate toughened Al 2 O 3 -based ceramic composites,” Ceram. Int., vol. 42, no. 14, pp. 16090–16095, 2016.
  • 20. E. R. Hull, J. Parisi, and P. C. Fibers, Self Healing Materials An Alternative Approach to 20 Centuries of Materials Science. Springer, 2007.
  • 21. B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, “Self-Healing Polymers and Composites,” Annu. Rev. Mater. Res., vol. 40, no. 1, pp. 179–211, 2010.
  • 22. L. Mercy, J. L. Mercy, and S. Prakash, “Self healing composite materials : A review,” no. January, pp. 1–10, 2016.
  • 23. W. Nakao, “Second Step Approach for Self Healing Ceramics,” in THERMEC 2009, 2010, vol. 638, pp. 2133–2137.
  • 24. T. Osada, W. Nakao, K. Takahashi, and K. Ando, “Self-crack-healing behavior in ceramic matrix composites,” in Advances in Ceramic Matrix Composites, 2014, pp. 410–441.
  • 25. P. Lee, T.-H. Ahn, S.-H. Kim, H.-M. Kim, and K.-B. Shim, “Crack self-healing behavior in silicon carbide composite ceramics to secure structural integrity and improve economics,” J. Ceram. Process. Res., vol. 16, pp. 114s-131s, 2015.
  • 26. K. Takahashi, K. Ando, and W. Nakao, “Crack-Healing Ability of Structural Ceramics and Methodology to Guarantee the Reliability of Ceramic Components,” in Raw Materials, Processing, Properties, Degradation and Healing, Costas Sikalidis, Intech Open, 2011.
  • 27. K. Takahashi, M. Yokouchi, S.-K. Lee, and K. Ando, “Crack-Healing Behavior of Al2O3 Toughened by SiC Whiskers,” J. Am. Ceram. Soc., vol. 86, no. 12, pp. 2143–2147, 2003.
  • 28. K. Takahashi, Y.-S. Jung, Y. Nagoshi, and K. Ando, “Crack-healing behavior of Si3N4/SiC composite under stress and low oxygen pressure,” Mater. Sci. Eng. A, vol. 527, no. 15, pp. 3343–3348, 2010.
  • 29. S.-K. Lee, M. Ono, W. Nakao, K. Takahashi, and K. Ando, “Crack-healing behaviour of mullite/SiC/Y2O3 composites and its application to the structural integrity of machined components,” J. Eur. Ceram. Soc., vol. 25, no. 15, pp. 3495–3502, 2005.
  • 30. Z. Chlup, P. Flasar, A. Kotoji, and I. Dlouhy, “Fracture behaviour of Al2O3/SiC nanocomposite ceramics after crack healing treatment,” J. Eur. Ceram. Soc., vol. 28, no. 5, pp. 1073–1077, 2008.
  • 31. P. Greil, “Generic principles of crack-healing ceramics,” J. Adv. Ceram., vol. 1, no. 4, pp. 249–267, 2012.
  • 32. S. Yoshioka and W. Nakao, “Methodology for evaluating self-healing agent of structural ceramics,” J. Intell. Mater. Syst. Struct., vol. 26, no. 11, pp. 1395–1403, 2015.
  • 33. S. Yoshioka, L. Boatemaa, S. van der Zwaag, W. Nakao, and W. G. Sloof, “On the use of TiC as high-temperature healing particles in alumina based composites,” J. Eur. Ceram. Soc., vol. 36, no. 16, pp. 4155–4162, 2016.
  • 34. W. Nakao, K. Takahashi, and K. Ando, “Threshold stress during crack-healing treatment of structural ceramics having the crack-healing ability,” Mater. Lett., vol. 61, no. 13, pp. 2711–2713, 2007.
  • 35. S. T. Nguyen, T. Nakayama, H. Suematsu, H. Iwasawa, T. Suzuki, and K. Niihara, “Self-crack healing ability and strength recovery in ytterbium disilicate/silicon carbide nanocomposites,” Int. J. Appl. Ceram. Technol., vol. 16, no. 1, pp. 39–49, 2019.
  • 36. H. Kim, M. Kim, S. Kang, S. Ahn, and K. Nam, “Bending strength and crack-healing behavior of Al2O3/SiC composites ceramics,” Mater. Sci. Eng. A, vol. 483, pp. 672–675, 2008.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Düzeltme Makalesi
Yazarlar

Mustafa Güven Gök 0000-0002-5959-0549

Proje Numarası FM2017BAP10
Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 18 Şubat 2020
Kabul Tarihi 18 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 4

Kaynak Göster

IEEE M. G. Gök, “Kendi Kendini İyileştirebilen Mühendislik Seramikleri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 4, ss. 1854–1864, 2020, doi: 10.17798/bitlisfen.690910.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr