Araştırma Makalesi
BibTex RIS Kaynak Göster

TiNb-esaslı β-Ti Alaşımlarının Kristal Yapı, Mikroyapı ve Dönüşüm Sıcaklıklarına Tantal Katkısının Etkileri

Yıl 2020, Cilt: 9 Sayı: 4, 1545 - 1553, 25.12.2020
https://doi.org/10.17798/bitlisfen.775976

Öz

β-tipi Ti-esaslı alaşımlar yüksek sıcaklıktaki dayanıklılığı ve biyo-uyumluluğu sayesinde uzay sanayisi ve medikal alanlarda kullanımı yaygın olan materyallerdir. Nb ve Ta gibi düşük yoğunluklu, üstün korozyon direnci ve toksik olmayan özelliklere sahip elementler ile takviye edilmesi, β-tipi Ti-esaslı alaşımları daha da çekici hale getirmiştir. TiNb(24,5-x)Ta(x=0,1,2,3,4) (at. %) oranlarında hazırlanan alaşımların X-ışını, mikroyapı ve dönüşüm sıcaklıkları incelendi. DSC analizlerinden 5,5 oC to 41,1 oC aralığında sadece α→β ters dönüşümü gözlenmiştir. Oda sıcaklığında yapılan XRD analizleri ile DSC sonuçlarının uyumlu olduğu görülmüştür. Baskın β fazlarına karşın α fazlarının küçük miktarlar da olduğu tespit edilmiştir. β fazının baskın olması Ta ve Nb elementlerinin iyi bir β stabilizatörü olduğunu göstermiştir. Optik mikroskop görüntülerinden alaşımlardaki β fazı, taneler ve tane sınırlarının artan Ta ilavesiyle belirginleşmiştir. SEM-EDX görüntülerinden α fazının çökelti olduğu görülmüştür. Ayrıca EDX sonuçları ile Ta element konsatrasyonunun tane sınırlarında arttığı bulunmuştur. Alaşımların (ev⁄a) ve (cv ) oranları oda sıcaklığı altında dönüşüm sergileyen düşük değerli (ev⁄a <5, cv ~ 0,15) yeni alaşımlar olduğu tespit edilmiştir.

Destekleyen Kurum

Fırat Üniversitesi, Bitlis Eren Üniversitesi

Proje Numarası

FF.18.30, FF.19.06, 2014.3

Kaynakça

  • Zhou Y.L., Mitsuo N., Toshikazu A., Hisao F., Hiroyuki T. 2005. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Materials Science and Engineering: A, 398 (1-2): 28-36.
  • Kim H., Hashimoto S., Kim J.I., Hosoda H., Miyazaki S. Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. 2006. Materials Science and Engineering: A, 417 (1-2): 120-128.
  • Lopes, E., Cremasco A., Afonso C., Caram R. 2011. Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials characterization, 62 (7): 673-680.
  • García-Garrido, C., Gonzalez-Gutierrez C., Torrecillas R., Perz-Pozo L., Salvo C., Chicardi. 2019. Manufacturing optimisation of an original nanostructured (beta+ gamma)-TiNbTa material. Journal of Materials Research and Technology, 8 (3): 2573-2585.
  • Dagdelen F., E Ercan. 2014. The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. Journal of Thermal Analysis and Calorimetry, 115 (1): 561-565.
  • Dagdelen F., Kok M., Qader I. 2019. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25 (6): 1420-1427.
  • Kent D., Wang G., Dargusch M. 2013. Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys. Journal of the Mechanical Behavior of Biomedical Materials, 28: 15-25.
  • Hussein A., Mohamed A., Ahmad M., Sherif K. 2014. Effect of heat treatment on the microstructure of Ti–Nb–Ta base alloys for biomedical applications. Int. J. Chem. Appl. Biol. Sci, 1: 119.
  • Mantani Y., Tajima M. 2006. Phase transformation of quenched α ″martensite by aging in Ti–Nb alloys. Materials Science and Engineering: A, 438: 315-319.
  • Dubinskiy S., Prokoshkin S., Brailovski V., Inaekyan K., Korotitskiy A. 2014. In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features. Materials characterization, 88: 127-142.
  • Dubinskiy S., Prokoshkin S.D., Brailovski V., Inaekyan K.E., Korotitskiy A.V., Filonov M.R., Petrzhik M.I. 2011. Structure formation during thermomechanical processing of Ti-Nb-(Zr, Ta) alloys and the manifestation of the shape-memory effect. The physics of metals and metallography, 112 (5): 503-516.
  • Inaekyan K., Brailovski V., Prokoshkin S., Pushin V., Dubinskiy S., Sheremetyev V. 2015. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys. Materials Characterization, 103: 65-74.
  • Dubinskiy S., Brailovski V., Pokoshkin A., Pushin V., Inaekyan K., Sheremetyev V., Petrzhik M., Filonov M. 2013. Structure and properties of Ti-19.7 Nb-5.8 Ta shape memory alloy subjected to thermomechanical processing including aging. Journal of materials engineering and performance, 22 (9): 2656-2664.
  • Brailovski V., Prokoshkin S., Gauthier M., Inaekyan K., Dubinskiy S., Petrzhik M., Filonov. 2011. Bulk and porous metastable beta Ti–Nb–Zr (Ta) alloys for biomedical applications. Materials Science and Engineering: C, 31 (3): 643-657.
  • Takahashi E., Sakurai T., Watanabe S., Masahashi N., Hanada S. 2002. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Materials Transactions, 43 (12): 2978-2983.
  • Fukui Y., Inamura T., Hosoda H., Wakashima K., Miyazaki S. 2004. Mechanical properties of a Ti-Nb-Al shape memory alloy. Materials Transactions, 45 (4): 1077-1082.
  • Kim J.I., Kim H.Y., Hosoda H., Miyazaki S. 2005. Shape memory behavior of Ti–22Nb–(0.5–2.0) O (at%) biomedical alloys. Materials transactions, 46 (4): 852-857.
  • Tahara M., Kim H.Y., Hosoda H., Miyazaki S. 2009. Shape memory effect and cyclic deformation behavior of Ti–Nb–N alloys. Functional Materials Letters, 2 (02): 79-82.
  • Al-Zain Y., Kim H.Y., Hosoda H., Nam T.H., Miyazaki S. 2010. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Materialia, 58 (12): 4212-4223.
  • Kim H.Y., Oshika N., Kim J. Inamura T., Hosoda H., Miyazaki S. 2007. Martensitic transformation and superelasticity of Ti-Nb-Pt alloys. Materials transactions, 48 (3): 400-406.
  • Ping, D., Mitarai Y., Yin F. 2005. Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy. Scripta materialia, 52 (12): 1287-1291.
  • Kim H., Sasaki T., Okutsu K., Kim J., Inamura T., Hosoda H., Miyazaki S. 2006. Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 54 (2): 423-433.
  • Bertrand E., Gloriant T., Gordin D.M., Vasiles u E., Drob P., Vasilescu C., Drob S.I. 2010. Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy. Journal of the mechanical behavior of biomedical materials, 3 (8): 559-564.
  • Hussein A.H., Gepreel H., Gouda M.K., Hefnawy A.M., Kandil S.H., 2016. Biocompatibility of new Ti–Nb–Ta base alloys. Materials Science and Engineering: C, 61: 574-578.
  • Qu, W.-T., Gong H., Wang J., Nie Y-S., Li Y. 2019. Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x) Nb–4Ta alloys. Rare Metals, 38 (10): 965-970.
  • Kim H.Y., Miyazaki S. 2016. Several issues in the development of Ti–Nb-based shape memory alloys. Shape Memory and Superelasticity, 2 (4): 380-390.
  • Zarinejad M., Liu Y. 2010. Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons, Nova Science Publishers, Inc., New York, 339.

The Effects of Tantalum Additive on the Crystal Structure, Microstructure and Transformation Temperatures of TiNb-based β-Ti Alloys

Yıl 2020, Cilt: 9 Sayı: 4, 1545 - 1553, 25.12.2020
https://doi.org/10.17798/bitlisfen.775976

Öz

β-type Ti-based alloys are materials which widely used in the aerospace industry and medical fields because it has a sufficient biocompatibility and high temperature resistance. Reinforcement with low-density, high corrosion resistance and non-toxic elements, such as Nb and Ta alloying with β-type of Ti-based alloys even more attractive. X-ray, microstructure, and transformation temperatures of TiNb(24,5-x)Ta(x = 0,1,2,3,4) (at. %) alloys were investigated. The DSC analysis showed only α→β reverse transformation for the temperature range of 5,5 oC to 41,1 oC. DSC results were found to be compatible with X-ray analysis taken at room temperature. It was found that α phases were in small amounts despite dominant β phases. The dominance of the β phase has shown that the Ta and Nb elements are a good β stabilizer. It was determined from the optical microscope images that the β phase, grains, and grain boundaries in alloys increased with the addition of Ta. From SEM-EDX results, it was found that α phase is a precipitation. Additionally, the EDX results showed that Ta elements concentration increased in the grain boundaries. Valance electron concentration (ev⁄a) and concentration of valance electron (cv ) values indicated that the alloy with low values of (ev⁄a <5, cv ~ 0,15) exhibit transformation under room temperature.

Proje Numarası

FF.18.30, FF.19.06, 2014.3

Kaynakça

  • Zhou Y.L., Mitsuo N., Toshikazu A., Hisao F., Hiroyuki T. 2005. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Materials Science and Engineering: A, 398 (1-2): 28-36.
  • Kim H., Hashimoto S., Kim J.I., Hosoda H., Miyazaki S. Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. 2006. Materials Science and Engineering: A, 417 (1-2): 120-128.
  • Lopes, E., Cremasco A., Afonso C., Caram R. 2011. Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials characterization, 62 (7): 673-680.
  • García-Garrido, C., Gonzalez-Gutierrez C., Torrecillas R., Perz-Pozo L., Salvo C., Chicardi. 2019. Manufacturing optimisation of an original nanostructured (beta+ gamma)-TiNbTa material. Journal of Materials Research and Technology, 8 (3): 2573-2585.
  • Dagdelen F., E Ercan. 2014. The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. Journal of Thermal Analysis and Calorimetry, 115 (1): 561-565.
  • Dagdelen F., Kok M., Qader I. 2019. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25 (6): 1420-1427.
  • Kent D., Wang G., Dargusch M. 2013. Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys. Journal of the Mechanical Behavior of Biomedical Materials, 28: 15-25.
  • Hussein A., Mohamed A., Ahmad M., Sherif K. 2014. Effect of heat treatment on the microstructure of Ti–Nb–Ta base alloys for biomedical applications. Int. J. Chem. Appl. Biol. Sci, 1: 119.
  • Mantani Y., Tajima M. 2006. Phase transformation of quenched α ″martensite by aging in Ti–Nb alloys. Materials Science and Engineering: A, 438: 315-319.
  • Dubinskiy S., Prokoshkin S., Brailovski V., Inaekyan K., Korotitskiy A. 2014. In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features. Materials characterization, 88: 127-142.
  • Dubinskiy S., Prokoshkin S.D., Brailovski V., Inaekyan K.E., Korotitskiy A.V., Filonov M.R., Petrzhik M.I. 2011. Structure formation during thermomechanical processing of Ti-Nb-(Zr, Ta) alloys and the manifestation of the shape-memory effect. The physics of metals and metallography, 112 (5): 503-516.
  • Inaekyan K., Brailovski V., Prokoshkin S., Pushin V., Dubinskiy S., Sheremetyev V. 2015. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys. Materials Characterization, 103: 65-74.
  • Dubinskiy S., Brailovski V., Pokoshkin A., Pushin V., Inaekyan K., Sheremetyev V., Petrzhik M., Filonov M. 2013. Structure and properties of Ti-19.7 Nb-5.8 Ta shape memory alloy subjected to thermomechanical processing including aging. Journal of materials engineering and performance, 22 (9): 2656-2664.
  • Brailovski V., Prokoshkin S., Gauthier M., Inaekyan K., Dubinskiy S., Petrzhik M., Filonov. 2011. Bulk and porous metastable beta Ti–Nb–Zr (Ta) alloys for biomedical applications. Materials Science and Engineering: C, 31 (3): 643-657.
  • Takahashi E., Sakurai T., Watanabe S., Masahashi N., Hanada S. 2002. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Materials Transactions, 43 (12): 2978-2983.
  • Fukui Y., Inamura T., Hosoda H., Wakashima K., Miyazaki S. 2004. Mechanical properties of a Ti-Nb-Al shape memory alloy. Materials Transactions, 45 (4): 1077-1082.
  • Kim J.I., Kim H.Y., Hosoda H., Miyazaki S. 2005. Shape memory behavior of Ti–22Nb–(0.5–2.0) O (at%) biomedical alloys. Materials transactions, 46 (4): 852-857.
  • Tahara M., Kim H.Y., Hosoda H., Miyazaki S. 2009. Shape memory effect and cyclic deformation behavior of Ti–Nb–N alloys. Functional Materials Letters, 2 (02): 79-82.
  • Al-Zain Y., Kim H.Y., Hosoda H., Nam T.H., Miyazaki S. 2010. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Materialia, 58 (12): 4212-4223.
  • Kim H.Y., Oshika N., Kim J. Inamura T., Hosoda H., Miyazaki S. 2007. Martensitic transformation and superelasticity of Ti-Nb-Pt alloys. Materials transactions, 48 (3): 400-406.
  • Ping, D., Mitarai Y., Yin F. 2005. Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy. Scripta materialia, 52 (12): 1287-1291.
  • Kim H., Sasaki T., Okutsu K., Kim J., Inamura T., Hosoda H., Miyazaki S. 2006. Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 54 (2): 423-433.
  • Bertrand E., Gloriant T., Gordin D.M., Vasiles u E., Drob P., Vasilescu C., Drob S.I. 2010. Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy. Journal of the mechanical behavior of biomedical materials, 3 (8): 559-564.
  • Hussein A.H., Gepreel H., Gouda M.K., Hefnawy A.M., Kandil S.H., 2016. Biocompatibility of new Ti–Nb–Ta base alloys. Materials Science and Engineering: C, 61: 574-578.
  • Qu, W.-T., Gong H., Wang J., Nie Y-S., Li Y. 2019. Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x) Nb–4Ta alloys. Rare Metals, 38 (10): 965-970.
  • Kim H.Y., Miyazaki S. 2016. Several issues in the development of Ti–Nb-based shape memory alloys. Shape Memory and Superelasticity, 2 (4): 380-390.
  • Zarinejad M., Liu Y. 2010. Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons, Nova Science Publishers, Inc., New York, 339.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ercan Ercan 0000-0002-1583-6068

Fethi Dağdelen 0000-0001-9849-590X

Proje Numarası FF.18.30, FF.19.06, 2014.3
Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 30 Temmuz 2020
Kabul Tarihi 3 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 4

Kaynak Göster

IEEE E. Ercan ve F. Dağdelen, “TiNb-esaslı β-Ti Alaşımlarının Kristal Yapı, Mikroyapı ve Dönüşüm Sıcaklıklarına Tantal Katkısının Etkileri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 4, ss. 1545–1553, 2020, doi: 10.17798/bitlisfen.775976.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr