Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Elastic Scattering Angular Distributions of Proton Halo Nuclei by Using Density-Dependent and Density-Independent Proximity Potentials

Yıl 2021, Cilt: 10 Sayı: 2, 348 - 361, 07.06.2021

Öz

Bu çalışmada, 1p halo çekirdekleri 8B ve 17F ve 2p halo çekirdeği 9C elastik saçılma açısal dağılımlarını açıklamak için alternatif potansiyeller araştırılıyor. Bu amaçla, proximity potansiyellerin on üç farklı yoğunluktan bağımsız ve bir yoğunluğa bağlı versiyonu çalışılıyor. Teorik sonuçlar birbirleriyle ve deneysel verilerle karşılaştırılıyor ve deneysel verilerle iyi uyumlu sonuçlar elde ediliyor.

Kaynakça

  • Yao Y.J., Zhang G.L., Qu W.W., Qian J.Q. 2015. Comparative studies for different proximity potentials applied to α decay. European Physical Journal A, 51:122.
  • Ghodsi O.N., Daei-Ataollah A. 2016. Systematic study of α decay using various versions of the proximity formalism. Physical Review C, 93: 024612.
  • Santhosh K.P., Sukumaran I. 2017. Heavy particle decay studies using different versions of nuclear potentials. European Physical Journal Plus, 132: 431.
  • Aygun M., Aygun Z. 2019. A comprehensive analysis of 9Li + 70Zn fusion cross section by using proximity potentials, temperature dependent density distributions and nuclear potentials. Revista Mexicana de Física, 65: 573-582.
  • Aygun M. 2020. A comprehensive theoretical analysis of 22Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. International Journal of Modern Physics E, 29: 1950112.
  • Aygun M. 2018. Alternative potentials analyzing the scattering cross sections of 7,9,10,11,12,14Be isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73: 1255-1262.
  • Aygun M. 2018. A Comparison of proximity potentials in the analysis of heavy-ion elastic cross sections. Ukrainian Journal of Physics, 63: 881.
  • Aygun M. 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42: 302-311.
  • Blocki J., Randrup J., Swiatecki W.J., Tsang C.F. 1977. Proximity forces. Annals of Physics, 105: 427.
  • Kumar R. 2011. Effect of isospin on the fusion reaction cross section using various nuclear proximity potentials within the Wong model. Physical Review C, 84: 044613.
  • Moller P., Nix J.R., Myers W.D., Swiatecki W.J. 1995. Nuclear Ground-State Masses and Deformations. Atomic Data and Nuclear Data Tables, 59: 185.
  • Pomorski K., Dudek J. 2003. Nuclear liquid-drop model and surface-curvature effects. Physical Review C, 67: 044316.
  • Dutt I., Puri R.K. 2010. Comparison of different proximity potentials for asymmetric colliding nuclei. Physical Review C, 81: 064609.
  • Reisdorf W. 1994. Heavy-ion reactions close to the Coulomb barrier. Journal of Physics G: Nuclear and Particle Physics, 20: 1297.
  • Winther A. 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594: 203-245.
  • Akyüz Ö., Winter A. 1981. Proceedings of the International School of Physics Enrico Fermi, Course LXXVII, Varenna, Italy Ed. by R. A. Broglia, C. H. Dasso, and R. Richi (North-Holland, Amsterdam), p. 492.
  • Christensen P.R., Winther A. 1976. The evidence of the ion-ion potentials from heavy ion elastic scattering. Physics Letters B, 65: 19-22.
  • Bass R. 1973. Threshold and angular momentum limit in the complete fusion of heavy ions. Physics Letters B, 47 (1973): 139.
  • Bass R. 1974. Fusion of heavy nuclei in a classical model. Nuclear Physics A, 231: 45.
  • Ngô H., Ngô C. 1980. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nuclear Physics A, 348: 140-156.
  • Denisov V.Yu. 2002. Interaction potential between heavy ions. Physics Letters B, 526: 315-321.
  • Guo C.L., Zhang G.L., Le X.Y. 2013. Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction. Nuclear Physics A, 897: 54.
  • Satchler G.R. 1983. Direct Nuclear Reactions. Oxford University Press, Oxford.
  • Thompson I.J. 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7: 167.
  • Myers W.D., Swiatecki W.J. 1966. Nuclear masses and deformations. Nuclear Physics, 81: 1-60.
  • Dutt I., Puri R.K. 2010. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Physical Review C, 81: 047601.
  • Gharaei R., Zanganeh V., Wang N. 2018. Systematic study of proximity potentials for heavy-ion fusion cross sections. Nuclear Physics A, 979: 237-250.
  • https://www-nds.iaea.org/exfor/ (Access date: 30.05.2021).
  • http://nrv.jinr.ru/nrv/ (Access date: 30.05.2021).

Analysis of Elastic Scattering Angular Distributions of Proton Halo Nuclei by Using Density-Dependent and Density-Independent Proximity Potentials

Yıl 2021, Cilt: 10 Sayı: 2, 348 - 361, 07.06.2021

Öz

Kaynakça

  • Yao Y.J., Zhang G.L., Qu W.W., Qian J.Q. 2015. Comparative studies for different proximity potentials applied to α decay. European Physical Journal A, 51:122.
  • Ghodsi O.N., Daei-Ataollah A. 2016. Systematic study of α decay using various versions of the proximity formalism. Physical Review C, 93: 024612.
  • Santhosh K.P., Sukumaran I. 2017. Heavy particle decay studies using different versions of nuclear potentials. European Physical Journal Plus, 132: 431.
  • Aygun M., Aygun Z. 2019. A comprehensive analysis of 9Li + 70Zn fusion cross section by using proximity potentials, temperature dependent density distributions and nuclear potentials. Revista Mexicana de Física, 65: 573-582.
  • Aygun M. 2020. A comprehensive theoretical analysis of 22Ne nucleus by using different density distributions, different nuclear potentials and different cluster approach. International Journal of Modern Physics E, 29: 1950112.
  • Aygun M. 2018. Alternative potentials analyzing the scattering cross sections of 7,9,10,11,12,14Be isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73: 1255-1262.
  • Aygun M. 2018. A Comparison of proximity potentials in the analysis of heavy-ion elastic cross sections. Ukrainian Journal of Physics, 63: 881.
  • Aygun M. 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42: 302-311.
  • Blocki J., Randrup J., Swiatecki W.J., Tsang C.F. 1977. Proximity forces. Annals of Physics, 105: 427.
  • Kumar R. 2011. Effect of isospin on the fusion reaction cross section using various nuclear proximity potentials within the Wong model. Physical Review C, 84: 044613.
  • Moller P., Nix J.R., Myers W.D., Swiatecki W.J. 1995. Nuclear Ground-State Masses and Deformations. Atomic Data and Nuclear Data Tables, 59: 185.
  • Pomorski K., Dudek J. 2003. Nuclear liquid-drop model and surface-curvature effects. Physical Review C, 67: 044316.
  • Dutt I., Puri R.K. 2010. Comparison of different proximity potentials for asymmetric colliding nuclei. Physical Review C, 81: 064609.
  • Reisdorf W. 1994. Heavy-ion reactions close to the Coulomb barrier. Journal of Physics G: Nuclear and Particle Physics, 20: 1297.
  • Winther A. 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594: 203-245.
  • Akyüz Ö., Winter A. 1981. Proceedings of the International School of Physics Enrico Fermi, Course LXXVII, Varenna, Italy Ed. by R. A. Broglia, C. H. Dasso, and R. Richi (North-Holland, Amsterdam), p. 492.
  • Christensen P.R., Winther A. 1976. The evidence of the ion-ion potentials from heavy ion elastic scattering. Physics Letters B, 65: 19-22.
  • Bass R. 1973. Threshold and angular momentum limit in the complete fusion of heavy ions. Physics Letters B, 47 (1973): 139.
  • Bass R. 1974. Fusion of heavy nuclei in a classical model. Nuclear Physics A, 231: 45.
  • Ngô H., Ngô C. 1980. Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation. Nuclear Physics A, 348: 140-156.
  • Denisov V.Yu. 2002. Interaction potential between heavy ions. Physics Letters B, 526: 315-321.
  • Guo C.L., Zhang G.L., Le X.Y. 2013. Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction. Nuclear Physics A, 897: 54.
  • Satchler G.R. 1983. Direct Nuclear Reactions. Oxford University Press, Oxford.
  • Thompson I.J. 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7: 167.
  • Myers W.D., Swiatecki W.J. 1966. Nuclear masses and deformations. Nuclear Physics, 81: 1-60.
  • Dutt I., Puri R.K. 2010. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions. Physical Review C, 81: 047601.
  • Gharaei R., Zanganeh V., Wang N. 2018. Systematic study of proximity potentials for heavy-ion fusion cross sections. Nuclear Physics A, 979: 237-250.
  • https://www-nds.iaea.org/exfor/ (Access date: 30.05.2021).
  • http://nrv.jinr.ru/nrv/ (Access date: 30.05.2021).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Murat Aygun 0000-0002-4276-3511

Yayımlanma Tarihi 7 Haziran 2021
Gönderilme Tarihi 21 Ocak 2021
Kabul Tarihi 21 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

IEEE M. Aygun, “Analysis of Elastic Scattering Angular Distributions of Proton Halo Nuclei by Using Density-Dependent and Density-Independent Proximity Potentials”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 2, ss. 348–361, 2021.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr