Araştırma Makalesi
BibTex RIS Kaynak Göster

Alev Püskürtme Piroliz Yöntemi Kullanarak IGZO Nanopartiküllerinin Sentezi ve Karakterizasyonu

Yıl 2021, Cilt: 10 Sayı: 4, 1282 - 1289, 31.12.2021
https://doi.org/10.17798/bitlisfen.908699

Öz

Yüksek elektron mobilitesi, düşük eşik gerilimi ve kaplama sonrası şeffaf özellik gösteren İndiyum Galyum Çinko Oksit (InGaZnO4, IGZO) malzemesi ekran teknolojilerinde artan bir ivmeyle kullanılmaya başlamıştır. Bu çalışmada, IGZO nanopartikülleri alev püskürtme piroliz yöntemi kullanılarak tek aşamada başarıyla sentezlendi. Üretilen nanopartiküllerin faz ve element analizleri, sırasıyla X-ışını kırınımı (XRD) ve X-ışını fotoelektron spektroskopisi (XPS) ölçümleriyle yapıldı. Isıl işlem öncesi XRD analizinde amorf yapı gözlemlenirken, 1200 oC de yapılan kalsinasyon sonucu rombohedral kristalin InGaZnO4 yapısı tespit edilmiştir. Ayrıca, elementel analiz sonucunda yapı içerisinde In, Ga, Zn ve O elementlerinin varlığı kanıtlanmıştır. Yüzey morfolojisi ve partikül büyüklüğü taramalı elektron mikroskobu (SEM) kullanılarak tespit edilirken, nanopartiküllerin parçacık boyutlarının <100 nm den küçük ve yarı küresel olduğu bulunmuştur. UV uyarma altında nanopartiküllerin fotolüminesans ve optik bozulma zamanı karakterizasyonları incelenmiş ve 380 nm uyarma altında IGZO nanopartikülleri, 510 nm ve 570 nm civarında emisyon sergilemiştir. Bu uyarma ve emisyon altında yapılan optik bozulma süresi iki üstelli ve 32,36 µs olarak hesaplanmıştır.

Teşekkür

Bu çalışmanın yapıldığı ve cihazlarının kullanıldığı Elektronik Malzemeler Üretimi ve Uygulama Merkezi (EMUM)’ ne vermiş olduğu desteklerden dolayı teşekkür ederim.

Kaynakça

  • [1] Jung C., Choi M.S., Choi K.H., Yoon D.H. 2010. Controllable Crystallinity of Synthesized In-Ga-Zn-O Nano-Powder by Using a Pulp Precursor for Printing Processes. Physica Status Solidi (A), 207 (7): 1680–1683.
  • [2] Wu M.C., Hsiao K.C., Lu H.C. 2015. Synthesis of InGaZnO4 Nanoparticles Using Low Temperature Multistep Co-Precipitation Method. Materials Chemistry and Physics, 162 : 386–391.
  • [3] Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. 2014. In-Ga-Zn Oxide Nanoparticles Acting as an Oxide Semiconductor Material Synthesized via a Coprecipitation-Based Method. Journal of Materials Chemistry C, 2 (13): 2448–2454.
  • [4] Barquinha P., Pereira L., Gonçalves G., Martins R., Fortunato E. 2009. Toward High-Performance Amorphous GIZO TFTs. Journal of The Electrochemical Society, 156 (3): H161.
  • [5] Nomura K., Takagi A., Kamiya T., Ohta H., Hirano M., Hosono H. 2006. Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45 (5 B): 4303–4308.
  • [6] Jeong J.K., Jeong J.H., Yang H.W., Park J.S., Mo Y.G., Kim H.D. 2007. High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel. Applied Physics Letters, 91 (11): 113505.
  • [7] Park J.S., Jeong J.K., Mo Y.G., Kim H.D., Kim S. Il. 2007. Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment. Applied Physics Letters, 90 (26): 262106.
  • [8] Yabuta H., Sano M., Abe K., Aiba T., Den T., Kumomi H., Nomura K., Kamiya T., Hosono H. 2006. High-Mobility Thin-Film Transistor with Amorphous InGaZnO4 Channel Fabricated by Room Temperature Rf-Magnetron Sputtering. Applied Physics Letters, 89 (11): 112123.
  • [9] Iwasaki T., Itagaki N., Den T., Kumomi H., Nomura K., Kamiya T., Hosono H. 2007. Combinatorial Approach to Thin-Film Transistors Using Multicomponent Semiconductor Channels: An Application to Amorphous Oxide Semiconductors in In-Ga-Zn-O System. Applied Physics Letters, 90 (24): 242114.
  • [10] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H. 2004. Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature, 432 (7016): 488–492.
  • [11] Cerdà J., Arbiol J., Diaz R., Dezanneau G., Morante J.R. 2002. Synthesis of Perovskite-Type BaSnO3 Particles Obtained by a New Simple Wet Chemical Route Based on a Sol-Gel Process. Materials Letters, 56 (3): 131–136.
  • [12] Habeeba K., Manjulavalli T.E., Ezhilarasi Gnanakumari D. V., Karthikadevi V. 2019. Highly Crystalline Perovskite BaSnO3 Nanopowder Synthesised Using Hydrothermal Technique. Materials Research Express, 6 (9): 094004.
  • [13] Deepa A.S., Vidya S., Manu P.C., Solomon S., John A., Thomas J.K. 2011. Structural and Optical Characterization of BaSnO3 Nanopowder Synthesized through a Novel Combustion Technique. Journal of Alloys and Compounds, 509 (5): 1830–1835.
  • [14] Gültekin S., Yıldırım S., Yılmaz O., Keskin İ.Ç., Katı M.İ., Çelik E. 2019. Structural and Optical Properties of SrAl2O4: Eu2+/Dy3+ Phosphors Synthesized by Flame Spray Pyrolysis Technique. Journal of Luminescence, 206 : 59–69.
  • [15] Yildirim S., Yurddaskal M., Dikici T., Aritman I., Ertekin K., Celik E. 2016. Structural and Luminescence Properties of Undoped, Nd3+ and Er3+ Doped TiO2 Nanoparticles Synthesized by Flame Spray Pyrolysis Method. Ceramics International, 42 (9): 10579–10586.
  • [16] Yildirim S., Karsu Asal E.C., Ertekin K., Celik E. 2017. Luminescent Properties of Scintillator Nanophosphors Produced by Flame Spray Pyrolysis. Journal of Luminescence, 187 : 304–312.
  • [17] Liu J.A., Li C.H., Shan J.J., Wu J.M., Gui R.F., Shi Y.S. 2018. Preparation of High-Density InGaZnO4 Target by the Assistance of Cold Sintering. Materials Science in Semiconductor Processing, 84 : 17–23.
  • [18] Chen J., Wang L., Su X., Kong L., Liu G., Zhang X. 2010. InGaZnO Semiconductor Thin Film Fabricated Using Pulsed Laser Deposition. Optics Express, 18 (2): 1398.
  • [19] Krishnan R., Thirumalai J., Chandramohan R. 2013. Room Temperature Photo-Induced, Eu3+-Doped IGZO Transparent Thin Films Fabricated Using Sol–Gel Method. Journal of Nanostructure in Chemistry, 3 (1): 1–4.
  • [20] Wu G.M., Liu C.Y., Sahoo A.K. 2015. RF Sputtering Deposited A-IGZO Films for LCD Alignment Layer Application. In: Applied Surface Science. Elsevier B.V., pp 48–54.
  • [21] Xu W., Hu L., Zhao C., Zhang L., Zhu D., Cao P., Liu W., Han S., Liu X., Jia F., Zeng Y., Lu Y. 2018. Low Temperature Solution-Processed IGZO Thin-Film Transistors. Applied Surface Science, 455 : 554–560.

Synthesis and Characterization of IGZO Nanoparticles Using Flame Spray Pyrolysis Method

Yıl 2021, Cilt: 10 Sayı: 4, 1282 - 1289, 31.12.2021
https://doi.org/10.17798/bitlisfen.908699

Öz

Indium Gallium Zinc Oxide (InGaZnO4, IGZO) material, which shows high electron mobility, low threshold voltage and transparent after coating, has been used with increasing acceleration in screen technologies. In this study, IGZO nanoparticles were successfully synthesized at one step using the flame spray pyrolysis method. Phase and elemental analysis of the produced nanoparticles were carried out by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) measurements, respectively. While the amorphous structure was observed in the XRD analysis before the heat treatment, the InGaZnO4 structure of the rhombohedral crystal was determined as a result of calcination at 1200 oC. In addition, as a result of elemental analysis, the existence of In, Ga, Zn and O elements in the structure has been proved. Surface morphology and particle size were determined using scanning electron microscopy (SEM), while the particle sizes of nanoparticles were found to be less than <100 nm and hemispherical. Photoluminescence and optical decay time characterizations of nanoparticles under UV excitation were studied and IGZO nanoparticles exhibited emission around 510 nm and 570 nm at 380 nm excitation. The optical decay time under this excitation and emission was calculated as bi-exponentials and 32.36 µs.

Kaynakça

  • [1] Jung C., Choi M.S., Choi K.H., Yoon D.H. 2010. Controllable Crystallinity of Synthesized In-Ga-Zn-O Nano-Powder by Using a Pulp Precursor for Printing Processes. Physica Status Solidi (A), 207 (7): 1680–1683.
  • [2] Wu M.C., Hsiao K.C., Lu H.C. 2015. Synthesis of InGaZnO4 Nanoparticles Using Low Temperature Multistep Co-Precipitation Method. Materials Chemistry and Physics, 162 : 386–391.
  • [3] Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. 2014. In-Ga-Zn Oxide Nanoparticles Acting as an Oxide Semiconductor Material Synthesized via a Coprecipitation-Based Method. Journal of Materials Chemistry C, 2 (13): 2448–2454.
  • [4] Barquinha P., Pereira L., Gonçalves G., Martins R., Fortunato E. 2009. Toward High-Performance Amorphous GIZO TFTs. Journal of The Electrochemical Society, 156 (3): H161.
  • [5] Nomura K., Takagi A., Kamiya T., Ohta H., Hirano M., Hosono H. 2006. Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45 (5 B): 4303–4308.
  • [6] Jeong J.K., Jeong J.H., Yang H.W., Park J.S., Mo Y.G., Kim H.D. 2007. High Performance Thin Film Transistors with Cosputtered Amorphous Indium Gallium Zinc Oxide Channel. Applied Physics Letters, 91 (11): 113505.
  • [7] Park J.S., Jeong J.K., Mo Y.G., Kim H.D., Kim S. Il. 2007. Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment. Applied Physics Letters, 90 (26): 262106.
  • [8] Yabuta H., Sano M., Abe K., Aiba T., Den T., Kumomi H., Nomura K., Kamiya T., Hosono H. 2006. High-Mobility Thin-Film Transistor with Amorphous InGaZnO4 Channel Fabricated by Room Temperature Rf-Magnetron Sputtering. Applied Physics Letters, 89 (11): 112123.
  • [9] Iwasaki T., Itagaki N., Den T., Kumomi H., Nomura K., Kamiya T., Hosono H. 2007. Combinatorial Approach to Thin-Film Transistors Using Multicomponent Semiconductor Channels: An Application to Amorphous Oxide Semiconductors in In-Ga-Zn-O System. Applied Physics Letters, 90 (24): 242114.
  • [10] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H. 2004. Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature, 432 (7016): 488–492.
  • [11] Cerdà J., Arbiol J., Diaz R., Dezanneau G., Morante J.R. 2002. Synthesis of Perovskite-Type BaSnO3 Particles Obtained by a New Simple Wet Chemical Route Based on a Sol-Gel Process. Materials Letters, 56 (3): 131–136.
  • [12] Habeeba K., Manjulavalli T.E., Ezhilarasi Gnanakumari D. V., Karthikadevi V. 2019. Highly Crystalline Perovskite BaSnO3 Nanopowder Synthesised Using Hydrothermal Technique. Materials Research Express, 6 (9): 094004.
  • [13] Deepa A.S., Vidya S., Manu P.C., Solomon S., John A., Thomas J.K. 2011. Structural and Optical Characterization of BaSnO3 Nanopowder Synthesized through a Novel Combustion Technique. Journal of Alloys and Compounds, 509 (5): 1830–1835.
  • [14] Gültekin S., Yıldırım S., Yılmaz O., Keskin İ.Ç., Katı M.İ., Çelik E. 2019. Structural and Optical Properties of SrAl2O4: Eu2+/Dy3+ Phosphors Synthesized by Flame Spray Pyrolysis Technique. Journal of Luminescence, 206 : 59–69.
  • [15] Yildirim S., Yurddaskal M., Dikici T., Aritman I., Ertekin K., Celik E. 2016. Structural and Luminescence Properties of Undoped, Nd3+ and Er3+ Doped TiO2 Nanoparticles Synthesized by Flame Spray Pyrolysis Method. Ceramics International, 42 (9): 10579–10586.
  • [16] Yildirim S., Karsu Asal E.C., Ertekin K., Celik E. 2017. Luminescent Properties of Scintillator Nanophosphors Produced by Flame Spray Pyrolysis. Journal of Luminescence, 187 : 304–312.
  • [17] Liu J.A., Li C.H., Shan J.J., Wu J.M., Gui R.F., Shi Y.S. 2018. Preparation of High-Density InGaZnO4 Target by the Assistance of Cold Sintering. Materials Science in Semiconductor Processing, 84 : 17–23.
  • [18] Chen J., Wang L., Su X., Kong L., Liu G., Zhang X. 2010. InGaZnO Semiconductor Thin Film Fabricated Using Pulsed Laser Deposition. Optics Express, 18 (2): 1398.
  • [19] Krishnan R., Thirumalai J., Chandramohan R. 2013. Room Temperature Photo-Induced, Eu3+-Doped IGZO Transparent Thin Films Fabricated Using Sol–Gel Method. Journal of Nanostructure in Chemistry, 3 (1): 1–4.
  • [20] Wu G.M., Liu C.Y., Sahoo A.K. 2015. RF Sputtering Deposited A-IGZO Films for LCD Alignment Layer Application. In: Applied Surface Science. Elsevier B.V., pp 48–54.
  • [21] Xu W., Hu L., Zhao C., Zhang L., Zhu D., Cao P., Liu W., Han S., Liu X., Jia F., Zeng Y., Lu Y. 2018. Low Temperature Solution-Processed IGZO Thin-Film Transistors. Applied Surface Science, 455 : 554–560.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Serdar Yıldırım 0000-0002-3730-3473

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 2 Nisan 2021
Kabul Tarihi 13 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 4

Kaynak Göster

IEEE S. Yıldırım, “Alev Püskürtme Piroliz Yöntemi Kullanarak IGZO Nanopartiküllerinin Sentezi ve Karakterizasyonu”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 4, ss. 1282–1289, 2021, doi: 10.17798/bitlisfen.908699.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr