Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Copper-Iron Oxide Thin Film Grown by Co-Sputtering

Yıl 2023, Cilt: 12 Sayı: 3, 625 - 633, 28.09.2023
https://doi.org/10.17798/bitlisfen.1251421

Öz

Bu çalışmada, sırasıyla DC magnetron ve RF magnetron püskürtme ile demir oksit ve bakır oksit yapıları büyütülmüş ve CuxFe3-xO4 yapısı ise birlikte püskürtme (Co-sputtering) ile büyütülmüştür. Büyütülmüş ince filmlerin yapısal optik ve topografik incelemeleri detaylı olarak yapılmıştır. İnce filmlerin absorpsiyon ölçümleri, oda sıcaklığında Perkin Elmer UV/Visible Lambda 2S spektrometresi yardımıyla alınmıştır. Cam üzerine büyütülen Fe2O3, CuxFe3-xO4, Cu2O ince filmin (ahυ)2 (cm-1 eV2) karşı enerji grafiğinde çizilen fit ile yasak bant aralığı enerjisinin değeri sırasıyla 2.44, 2.39, 2.55 eV olarak hesaplanmıştır. Ayrıca ince film yapılarının yapısal ve topografik özellikleri, taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM), X-ışını kırınımı (XRD), X-ışını fotoelektron spektroskopisi (XPS) ve Raman spektroskopisi ile incelenmiştir. XPS sonuçlarına göre; Fe3+ (Fe2O3) iyonu 2p3\2 orbitalinin için bağlanma enerjileri 710.85 eV ve Fe3+ iyonu (CuxFe3-xO4) için 712.49 eV'dir. Cu1+ iyonu (Cu2O) için 2p3\2 orbitalinin bağlanma enerjisi 933,64 eV'dir ve Cu2+ iyonu (CuxFe3-xO4) için 935,58 eV'dir. O2- iyonların 1s orbitalinin bağlanma enerjisi Fe2O3, CuxFe3-xO4, Cu2O için sırasıyla 530, 528 ve 532 eV'dir.

Kaynakça

  • [1] C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem., vol. 15, no. 35–36, p. 3559, 2005.
  • [2] V. Bogush, “Application of Electroless Metal Deposition for Advanced,” Composite Shielding Materials. J. Optoelec. and Adv. Mat, vol. 7, pp. 1635–1642, 2005.
  • [3] S. Kamiyama, K. Okamoto, and T. Oyama, “Study on regulating characteristics of magnetic fluid active damper,” Energy Convers. Manag., vol. 43, no. 3, pp. 281–287, 2002.
  • [4] D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon N. Y., vol. 39, no. 2, pp. 279–285, 2001.
  • [5] L. X. Lian, L. J. Deng, and M. Han, “Microwave Electromagnetic and Absorption Properties of Nd2Fe14B/ -Fe Nanocomposites in the 0.5-18 and 26.5-40 GHz Ranges,” J. App. Phy, vol. 101, pp. 09M – 520, 2007.
  • [6] U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, New York: Wiley, 2007.
  • [7] M. Vallet-Regí, C. V. Ragel, and A. J. Salinas, “Glasses with medical applications,” Eur. J. Inorg. Chem., vol. 2003, no. 6, pp. 1029–1042, 2003.
  • [8] A. N. Sukach, A. S. Lebedinskii, V. I. Grishchenko, and T. D. Lyashenko, “Effect of magnetic nanoparticles Fe3O4 on viability, attachment, and spreading of isolated fetuses and newborn rats,” Cell and Tissue Biology, vol. 5, pp. 388–396, 2011.
  • [9] L. Levy, Y. Sahoo, K.-S. Kim, E. J. Bergey, and P. N. Prasad, “Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater., vol. 14, no. 9, pp. 3715–3721, 2002.
  • [10] A. Duret and M. Graetzel, “Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis,” ChemInform, vol. 36, no. 48, 2005.
  • [11] J. Sartoretti, C. Ulmann, M. Alexander, B. D. Augustynski, and J. Weidenkaff, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes,” Chemical Physics Letters, vol. 376, 2005.
  • [12] W. B. Ingler Jr, J. P. Baltrus, and S. U. M. Khan, “Photoresponse of p-type zinc-doped iron(III) oxide thin films,” J. Am. Chem. Soc., vol. 126, no. 33, pp. 10238–10239, 2004.
  • [13] R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation,” Journal of Solid State Chemistry, 186, 261-267, 2012.
  • [14] Q. Liu, S. Anandan, S. H. Yang, and W. K. Ge, “Nanostructured CuO films on copper: Fabrication and application as a cathode in dye-sensitized TiO2 solar cells,” in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (Vol. 1, pp. 229-232). IEEE, 2006.
  • [15] T. Jiang, M. Bujoli-Doeuff, Y. Farré, Y. Pellegrin, E. Gautron, M. Boujtita, and F. Odobel, “CuO nanomaterials for p-type dye-sensitized solar cells,” RSC advances, vol. 6, no. 114, pp. 112765-112770, 2016.
  • [16] S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 35-40, 2005.
  • [17] D. Wongratanaphisan, K. Kaewyai, S. Choopun, A. Gardchareon, P. Ruankham, and S. Phadungdhitidhada, “CuO-Cu2O nanocomposite layer for light-harvesting enhancement in ZnO dye-sensitized solar cells,” Applied Surface Science, 474, pp. 85-90, 2019.
  • [18] M. Mazloum-Ardakani, and R. Arazi, “Enhancement of photovoltaic performance using a novel photocathode based on poly (3, 4-ethylenedioxythiophene)/Ag–CuO nanocomposite in dye-sensitized solar cell,” Comptes Rendus. Chimie, vol.23, no. 2, pp. 105-115, 2020.
  • [19] K. Sharma, V. Sharma, and S. S. Sharma, “Dye-sensitized solar cells: fundamentals and current status,” Nanoscale research letters, vol. 13, no. 1, pp. 1-46, 2018.
  • [20] S. Baturay, A. Tombak, D. Batibay, and Y. S. Ocak, “n-Type conductivity of CuO thin films by metal doping,” Appl. Surf. Sci., vol. 477, pp. 91–95, 2019.
  • [21] T. Chtouki et al., “Characterization and third harmonic generation calculations of undoped and doped spin-coated multilayered CuO thin films,” J. Phys. Chem. Solids, vol. 124, pp. 60–66, 2019.
  • [22] R. Jayakrishnan, A. S. Kurian, V. G. Nair, and M. R. Joseph, “Effect of vacuum annealing on the photoconductivity of CuO thin films grown using sequential ionic layer adsorption reaction,” Mater. Chem. Phys., vol. 180, pp. 149–155, 2016.
  • [23] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Sol. Energy, vol. 80, no. 6, pp. 715–722, 2006.
  • [24] M. Harada, M. Kuwa, R. Sato, T. Teranishi, M. Takahashi, and S. Maenosono, “Cation distribution in monodispersed MFe2O4 (M= Mn, Fe, Co, Ni, and Zn) nanoparticles investigated by x-ray absorption fine structure spectroscopy: implications for magnetic data storage, catalysts, sensors, and ferrofluids,” ACS Applied Nano Materials, vol. 3, no. 8, pp. 8389–8402, 2020.
  • [25] C. H. Tsai, P. H. Fei, C. M. Lin, and S. L. Shiu, “CuO and CuO/graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells,” Coatings, vol. 8, no. 1, p. 21, 2018.
  • [26] N. Abraham, A. Rufus, C. Unni, and D. Philip, “Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200, pp. 116-126, 2018.
  • [27] J. K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, and G. Singh, “Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications,” Journal of Alloys and Compounds, 632, pp. 321-325, 2015.
  • [28] V. S. Prabhin, K. Jeyasubramanian, N. R. Romulus, and N. N. Singh, “Fabrication of dye sensitized solar cell using chemically tuned CuO nano-particles prepared by sol-gel method,” Archives of Materials Science, vol. 6, no. 7, pp. 5-9, 2017.
  • [29] H. Guo, and A. S. Barnard, “Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability,” Journal of Materials Chemistry A, vol. 1, no. 1, pp. 27-42, 2013.
  • [30] H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S. C. Warren, “Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger,” Energy & Environmental Science, vol. 4, no. 3, pp. 958-964, 2011.
  • [31] Y. H. Chen, and C. C. Lin, “Effect of nano-hematite morphology on photocatalytic activity,” Physics and Chemistry of Minerals, 41, pp. 727-736, 2014.
  • [32] S. Yang, Y. Xu, Y. Sun, G. Zhang, and D. Gao, “Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route,” CrystEngComm, vol. 14, no. 23, pp. 7915-7921, 2012.
  • [33] X. L. Fang, C. Chen, M. S. Jin, Q. Kuang, Z. X. Xie, S. Y. Xie, L. S. Zheng, “Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment,” Journal of Materials Chemistry, vol. 19, no. 34, pp. 6154-6160, 2009.
  • [34] S. K. Patel, D. Agravat, O. Alsalman, J. Surve, I. Crowe, S. Taya, and T. K. Nguyen, “Design of a broadband solar absorber based on Fe2O3/CuO thin film absorption structure,” Optical and Quantum Electronics, vol. 55, no. 5, p. 430, 2023.
  • [35] D. Yang, C. Bai, J. Liu, S. Li, C. Tu, F. Zhu, and T. Zhang, “Construction of 3DOM Fe2O3/CuO heterojunction nanomaterials for enhanced AP decomposition,” Applied Surface Science, 619, p. 156739, 2023.
  • [36] H. Alnahari, A. H. Al-Hammadi, A. Al-Sharabi, A. Alnehia, and A. B. Al-Odayni, “Structural, morphological, optical, and antibacterial properties of CuO–Fe2O3–MgO–CuFe2O4 nanocomposite synthesized via auto-combustion route,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 7,p. 682, 2023.
  • [37] M. E. Fleet, “The structure of magnetite: Symmetry of cubic spinels,” J. Solid State Chem., vol. 62, no. 1, pp. 75–82, 1986.
  • [38] D. Varshney and A. Yogi, “Structural and transport properties of stoichiometric and Cu2+-doped magnetite: Fe3−xCuxO4,” Materials Chemistry and Physics, vol. 123, no. 2–3, pp. 434–438, 2010.
  • [39] F. J. Owens, and J. Orosz, “Effect of nanosizing on lattice and magnon modes of hematite,” Solid state communications, vol. 138, no.2, pp. 95-98, 2006. [40] A. M. Jubb and H. C. Allen, “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition,” ACS Applied Materials and Interfaces, vol. 2i no. 10, pp. 2804-2812, 2010.
  • [41] F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, “Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films,” Mater. Chem. Phys., vol. 147, no. 3, pp. 987–995, 2014.
  • [42] A. M. Jubb and H. C. Allen, “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition,” ACS Appl. Mater. Interfaces, vol. 2, no. 10, pp. 2804–2812, 2010.
Yıl 2023, Cilt: 12 Sayı: 3, 625 - 633, 28.09.2023
https://doi.org/10.17798/bitlisfen.1251421

Öz

Destekleyen Kurum

Atatürk Üniversitesi

Kaynakça

  • [1] C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem., vol. 15, no. 35–36, p. 3559, 2005.
  • [2] V. Bogush, “Application of Electroless Metal Deposition for Advanced,” Composite Shielding Materials. J. Optoelec. and Adv. Mat, vol. 7, pp. 1635–1642, 2005.
  • [3] S. Kamiyama, K. Okamoto, and T. Oyama, “Study on regulating characteristics of magnetic fluid active damper,” Energy Convers. Manag., vol. 43, no. 3, pp. 281–287, 2002.
  • [4] D. D. L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials,” Carbon N. Y., vol. 39, no. 2, pp. 279–285, 2001.
  • [5] L. X. Lian, L. J. Deng, and M. Han, “Microwave Electromagnetic and Absorption Properties of Nd2Fe14B/ -Fe Nanocomposites in the 0.5-18 and 26.5-40 GHz Ranges,” J. App. Phy, vol. 101, pp. 09M – 520, 2007.
  • [6] U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, New York: Wiley, 2007.
  • [7] M. Vallet-Regí, C. V. Ragel, and A. J. Salinas, “Glasses with medical applications,” Eur. J. Inorg. Chem., vol. 2003, no. 6, pp. 1029–1042, 2003.
  • [8] A. N. Sukach, A. S. Lebedinskii, V. I. Grishchenko, and T. D. Lyashenko, “Effect of magnetic nanoparticles Fe3O4 on viability, attachment, and spreading of isolated fetuses and newborn rats,” Cell and Tissue Biology, vol. 5, pp. 388–396, 2011.
  • [9] L. Levy, Y. Sahoo, K.-S. Kim, E. J. Bergey, and P. N. Prasad, “Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater., vol. 14, no. 9, pp. 3715–3721, 2002.
  • [10] A. Duret and M. Graetzel, “Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis,” ChemInform, vol. 36, no. 48, 2005.
  • [11] J. Sartoretti, C. Ulmann, M. Alexander, B. D. Augustynski, and J. Weidenkaff, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes,” Chemical Physics Letters, vol. 376, 2005.
  • [12] W. B. Ingler Jr, J. P. Baltrus, and S. U. M. Khan, “Photoresponse of p-type zinc-doped iron(III) oxide thin films,” J. Am. Chem. Soc., vol. 126, no. 33, pp. 10238–10239, 2004.
  • [13] R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation,” Journal of Solid State Chemistry, 186, 261-267, 2012.
  • [14] Q. Liu, S. Anandan, S. H. Yang, and W. K. Ge, “Nanostructured CuO films on copper: Fabrication and application as a cathode in dye-sensitized TiO2 solar cells,” in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (Vol. 1, pp. 229-232). IEEE, 2006.
  • [15] T. Jiang, M. Bujoli-Doeuff, Y. Farré, Y. Pellegrin, E. Gautron, M. Boujtita, and F. Odobel, “CuO nanomaterials for p-type dye-sensitized solar cells,” RSC advances, vol. 6, no. 114, pp. 112765-112770, 2016.
  • [16] S. Anandan, X. Wen, and S. Yang, “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 35-40, 2005.
  • [17] D. Wongratanaphisan, K. Kaewyai, S. Choopun, A. Gardchareon, P. Ruankham, and S. Phadungdhitidhada, “CuO-Cu2O nanocomposite layer for light-harvesting enhancement in ZnO dye-sensitized solar cells,” Applied Surface Science, 474, pp. 85-90, 2019.
  • [18] M. Mazloum-Ardakani, and R. Arazi, “Enhancement of photovoltaic performance using a novel photocathode based on poly (3, 4-ethylenedioxythiophene)/Ag–CuO nanocomposite in dye-sensitized solar cell,” Comptes Rendus. Chimie, vol.23, no. 2, pp. 105-115, 2020.
  • [19] K. Sharma, V. Sharma, and S. S. Sharma, “Dye-sensitized solar cells: fundamentals and current status,” Nanoscale research letters, vol. 13, no. 1, pp. 1-46, 2018.
  • [20] S. Baturay, A. Tombak, D. Batibay, and Y. S. Ocak, “n-Type conductivity of CuO thin films by metal doping,” Appl. Surf. Sci., vol. 477, pp. 91–95, 2019.
  • [21] T. Chtouki et al., “Characterization and third harmonic generation calculations of undoped and doped spin-coated multilayered CuO thin films,” J. Phys. Chem. Solids, vol. 124, pp. 60–66, 2019.
  • [22] R. Jayakrishnan, A. S. Kurian, V. G. Nair, and M. R. Joseph, “Effect of vacuum annealing on the photoconductivity of CuO thin films grown using sequential ionic layer adsorption reaction,” Mater. Chem. Phys., vol. 180, pp. 149–155, 2016.
  • [23] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Sol. Energy, vol. 80, no. 6, pp. 715–722, 2006.
  • [24] M. Harada, M. Kuwa, R. Sato, T. Teranishi, M. Takahashi, and S. Maenosono, “Cation distribution in monodispersed MFe2O4 (M= Mn, Fe, Co, Ni, and Zn) nanoparticles investigated by x-ray absorption fine structure spectroscopy: implications for magnetic data storage, catalysts, sensors, and ferrofluids,” ACS Applied Nano Materials, vol. 3, no. 8, pp. 8389–8402, 2020.
  • [25] C. H. Tsai, P. H. Fei, C. M. Lin, and S. L. Shiu, “CuO and CuO/graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells,” Coatings, vol. 8, no. 1, p. 21, 2018.
  • [26] N. Abraham, A. Rufus, C. Unni, and D. Philip, “Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200, pp. 116-126, 2018.
  • [27] J. K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, and G. Singh, “Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications,” Journal of Alloys and Compounds, 632, pp. 321-325, 2015.
  • [28] V. S. Prabhin, K. Jeyasubramanian, N. R. Romulus, and N. N. Singh, “Fabrication of dye sensitized solar cell using chemically tuned CuO nano-particles prepared by sol-gel method,” Archives of Materials Science, vol. 6, no. 7, pp. 5-9, 2017.
  • [29] H. Guo, and A. S. Barnard, “Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability,” Journal of Materials Chemistry A, vol. 1, no. 1, pp. 27-42, 2013.
  • [30] H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S. C. Warren, “Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger,” Energy & Environmental Science, vol. 4, no. 3, pp. 958-964, 2011.
  • [31] Y. H. Chen, and C. C. Lin, “Effect of nano-hematite morphology on photocatalytic activity,” Physics and Chemistry of Minerals, 41, pp. 727-736, 2014.
  • [32] S. Yang, Y. Xu, Y. Sun, G. Zhang, and D. Gao, “Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route,” CrystEngComm, vol. 14, no. 23, pp. 7915-7921, 2012.
  • [33] X. L. Fang, C. Chen, M. S. Jin, Q. Kuang, Z. X. Xie, S. Y. Xie, L. S. Zheng, “Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment,” Journal of Materials Chemistry, vol. 19, no. 34, pp. 6154-6160, 2009.
  • [34] S. K. Patel, D. Agravat, O. Alsalman, J. Surve, I. Crowe, S. Taya, and T. K. Nguyen, “Design of a broadband solar absorber based on Fe2O3/CuO thin film absorption structure,” Optical and Quantum Electronics, vol. 55, no. 5, p. 430, 2023.
  • [35] D. Yang, C. Bai, J. Liu, S. Li, C. Tu, F. Zhu, and T. Zhang, “Construction of 3DOM Fe2O3/CuO heterojunction nanomaterials for enhanced AP decomposition,” Applied Surface Science, 619, p. 156739, 2023.
  • [36] H. Alnahari, A. H. Al-Hammadi, A. Al-Sharabi, A. Alnehia, and A. B. Al-Odayni, “Structural, morphological, optical, and antibacterial properties of CuO–Fe2O3–MgO–CuFe2O4 nanocomposite synthesized via auto-combustion route,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 7,p. 682, 2023.
  • [37] M. E. Fleet, “The structure of magnetite: Symmetry of cubic spinels,” J. Solid State Chem., vol. 62, no. 1, pp. 75–82, 1986.
  • [38] D. Varshney and A. Yogi, “Structural and transport properties of stoichiometric and Cu2+-doped magnetite: Fe3−xCuxO4,” Materials Chemistry and Physics, vol. 123, no. 2–3, pp. 434–438, 2010.
  • [39] F. J. Owens, and J. Orosz, “Effect of nanosizing on lattice and magnon modes of hematite,” Solid state communications, vol. 138, no.2, pp. 95-98, 2006. [40] A. M. Jubb and H. C. Allen, “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition,” ACS Applied Materials and Interfaces, vol. 2i no. 10, pp. 2804-2812, 2010.
  • [41] F. A. Akgul, G. Akgul, N. Yildirim, H. E. Unalan, and R. Turan, “Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films,” Mater. Chem. Phys., vol. 147, no. 3, pp. 987–995, 2014.
  • [42] A. M. Jubb and H. C. Allen, “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition,” ACS Appl. Mater. Interfaces, vol. 2, no. 10, pp. 2804–2812, 2010.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Sevda Sarıtaş 0000-0002-7274-3968

Erken Görünüm Tarihi 23 Eylül 2023
Yayımlanma Tarihi 28 Eylül 2023
Gönderilme Tarihi 14 Şubat 2023
Kabul Tarihi 16 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 3

Kaynak Göster

IEEE S. Sarıtaş, “Investigation of Copper-Iron Oxide Thin Film Grown by Co-Sputtering”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 12, sy. 3, ss. 625–633, 2023, doi: 10.17798/bitlisfen.1251421.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr