The Effect of Pistachio Vera Shell Ash on Concrete Performance
Year 2025,
Volume: 14 Issue: 1, 513 - 528, 26.03.2025
Murat Doğruyol
,
Mahmut Durmaz
Abstract
Cement production is a major contributor to global energy consumption and CO2 emissions, prompting the need for sustainable alternatives in the construction industry. This study investigates the potential of Pistachio Vera Shell Ash (PSA), an agricultural waste, as a partial replacement for cement in concrete. PSA was substituted at 3%, 5%, and 10% by weight of CEM I 42.5 R cement in concrete mixtures, and its effects on the physical, mechanical, and microstructural properties of concrete were evaluated. The results indicate that as the PSA substitution rate increased, the water demand of the concrete mixtures rose, leading to reduced workability. At the 3% replacement level, the compressive strength of the concrete remained comparable to that of plain concrete and only a 10% reduction was observed at 28 days. However, higher substitution rates (5% and 10%) resulted in significant strength losses, with reductions of 21% and 42.7%, respectively. Despite its non-pozzolanic nature, PSA demonstrated potential as a supplementary cementitious material (SCM), particularly in regions with abundant pistachio production. The study concludes that PSA can contribute to sustainable construction practices by reducing the environmental impact of concrete production and promoting the recycling of agricultural waste. Further research is recommended to optimize PSA substitution levels and enhance its compatibility with concrete matrices.
Ethical Statement
The study is complied with research and publication ethics.
Project Number
Siirt University Scientific Research Projects Unit (2018-SİÜMÜH-040)
Thanks
The authors gratefully acknowledge the financial support provided by the Siirt University Scientific Research Projects Unit (Project No: 2018-SİÜMÜH-040). Additionally, we extend our sincere appreciation to Limak – Siirt Kurtalan Cement Factory and Siirt Çabuklar Concrete Plant for their valuable contributions to this study.
References
- C. Zhang, H. Khorshidi, E. Najafi, and M. Ghasemi, “Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review,” Journal of Cleaner Production, vol. 384, Art. no. 135390, 2023, doi: https://doi.org/10.1016/j.jclepro.2022.135390.
- B. Kanagaraj, N. Anand, U. J. Alengaram, S. Raj R, and G. Jayakumar, “Promulgation of engineering and sustainable performances of self-compacting geopolymer concrete,” Journal of Building Engineering, vol. 68, Art. no. 106093, 2023, doi: https://doi.org/10.1016/j.jobe.2023.106093.
- A. Karaşin and M. Doğruyol, “An experimental study on strength and durability for utilization of fly ash in concrete mix,” Advances in Materials Science and Engineering, vol. 2014, 2014, doi: https://doi.org/10.1155/2014/417514.
- A. M. Rashad, “A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Natural Resources Conservation and Research, vol. 1, 2018, doi: https://doi.org/10.24294/nrcr.v1i2.752.
- A. Gültekin, “Properties of basalt fiber-reinforced lightweight geopolymer mortars produced with expanded glass aggregate,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 205–215, 2024, doi: https://doi.org/10.17798/bitlisfen.1379342.
- Z. F. Uruk and A. K. Külünkoğlu İslamoğlu, “BREEAM, LEED ve DGNB yeşil bina sertifikasyon sistemlerinin standart bir konutta karşılaştırılması,” European Journal of Science and Technology, pp. 143–154, 2019, doi: https://doi.org/10.31590/ejosat.512291.
- M. Doğruyol, “Diyarbakır bazaltının mineral katkıları ile kullanılmasının betonun dayanım ve dayanıklılığına etkisi,” M.S. thesis, Dicle Üniversitesi, 2017.
- S. G. Gok and O. Sengul, “Mechanical properties of alkali-activated slag based SIFCON incorporating waste steel fibers and waste glass,” Construction and Building Materials, vol. 408, Art. no. 133697, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.133697.
- M. Doğruyol, “Characterization of historic mortars and the effect of rice husk ash (RHA) on quicklime,” Case Studies in Construction Materials, vol. 21, 2024, doi: https://doi.org/10.1016/j.cscm.2024.e03542.
- P. K. Mehta, Concrete: Structure, Properties and Materials, 1986.
- V. M. Malhotra and P. K. Mehta, High-Performance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice, and Case Histories, 2002.
- A. Neville, “The confused world of sulfate attack on concrete,” Cement and Concrete Research, vol. 34, pp. 1275–1296, 2004, doi: https://doi.org/10.1016/j.cemconres.2004.04.004.
- S. G. Gok and O. Sengul, “The use of waste glass as an activator in alkali-activated slag mortars,” Proceedings of the Institution of Civil Engineers - Engineering Sustainability, vol. 174, pp. 120–130, 2021, doi: https://doi.org/10.1680/jensu.19.00070.
- M. Doğruyol, E. Ayhan, and A. Karaşin, “Effect of waste steel fiber use on concrete behavior at high temperature,” Case Studies in Construction Materials, vol. 20, 2024, doi: https://doi.org/10.1016/j.cscm.2024.e03051.
- S. G. Gök, I. Kılıç, and O. Sengul, “Properties of alkali-activated roller compacted concretes produced from waste aggregates,” Cement Wapno Beton, vol. 26, pp. 352–363, 2021, doi: https://doi.org/10.32047/CWB.2021.26.4.7.
- E. Ayhan, M. Doğruyol, F. Kıpçak, and A. Karaşin, “Atık taşıt lastik çelik lifinin beton davranışına etkisi,” DÜMF Mühendislik Dergisi, 2024, doi: https://doi.org/10.24012/dumf.1468070.
- Ready-mixed concrete industry statistic, ERMCO, 2019.
- Global Statistical Review, Nuts and Dried Fruits Global Statistical Review, 2014–2015.
- A. Karasin, M. Hadzima-Nyarko, E. Işık, M. Doğruyol, I. B. Karasin, and S. Czarnecki, “The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks,” Materials, vol. 15, 2022, doi: https://doi.org/10.3390/ma15041581.
- L. Lam, Y. L. Wong, and C. S. Poon, “Effect of fly ash and silica fume on compressive and fracture behaviors of concrete,” Cement and Concrete Research, vol. 28, no. 2, pp. 271–283.
- F. Z. Çiçek, R. Pekgökgöz, S. B. Kazanasmaz, A. Sarıışık, and F. Avcil, “Effect of fly ash and metakaolin substituted forms on structural properties in light mortar with pumice aggregate,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 709–722, 2024, doi: https://doi.org/10.17798/bitlisfen.1479126.
- R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. Khan, and J. Mirza, “Reduction in environmental problems using rice-husk ash in concrete,” Construction and Building Materials, vol. 30, pp. 360–365, 2012.
- S. Yıldız, İ. Balaydın, and Z. Ç. Ulucan, “Pirinç kabuğu külünün beton dayanımına etkisi,” Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, pp. 85–91, 2007.
- İ. Tekin, İ. Dirikolu, and H. S. Gökçe, “A regional supplementary cementitious material for the cement industry: Pistachio shell ash,” Journal of Cleaner Production, vol. 285, Art. no. 124810, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.124810.
- Turkish Statistical Institute (TUIK), Pistachio Statistics (Vol. 2), 2018.
- J. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels,” Fuel, vol. 84, no. 5, pp. 487–494, 2005.
- R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, “A review on biomass as a fuel for boilers,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2262–2289, 2011.
- A. Taghizadeh-Alisaraei, H. A. Assar, B. Ghobadian, and A. Motevali, “Potential of biofuel production from pistachio waste in Iran,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 510–522, 2017.
- Y. Baran, H. S. Gökçe, and M. Durmaz, “Physical and mechanical properties of cement containing regional hazelnut shell ash wastes,” Journal of Cleaner Production, vol. 259, Art. no. 120965, 2020.
- J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama, and F. Nasir Ani, “Preparing activated carbon from various nutshells by chemical activation with K₂CO₃,” Carbon, vol. 40, pp. 2381–2386, 2002, doi: https://doi.org/10.1016/S0008-6223(02)00118-5.
- N. Raghavan, S. Thangavel, and G. Venugopal, “A short review on preparation of graphene from waste and bioprecursors,” Applied Materials Today, vol. 7, pp. 246–254, 2017, doi: https://doi.org/10.1016/j.apmt.2017.04.005.
- L. Tosti, A. van Zomeren, J. R. Pels, A. Damgaard, and R. N. J. Comans, “Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products,” Journal of Cleaner Production, vol. 245, Art. no. 118937, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118937.
- M. Du, H. Jing, Y. Gao, H. Su, and H. Fang, “Carbon nanomaterials enhanced cement-based composites: Advances and challenges,” Nanotechnology Reviews, vol. 9, pp. 115–135, 2020, doi: https://doi.org/10.1515/ntrev-2020-0011.
- ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, USA, 2003.
- Y. T. Erdoğan, Materials of Construction, M.E.T.U. Press, Ankara, 2002.
- M. Shakouri, C. L. Exstrom, S. Ramanathan, and P. Suraneni, “Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash,” Construction and Building Materials, vol. 243, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118171.
- J. Kamau, A. Ahmed, P. Hirst, and J. Kangwa, “Suitability of corncob ash as a supplementary cementitious material,” International Journal of Materials Science and Engineering, vol. 4, no. 4, pp. 215–228, n.d., doi: https://doi.org/10.17706/ijmse.2016.4.4.215-228.
- M. Doğruyol, “Determination of ASR in concrete using characterization methods,” Buildings, vol. 14, p. 657, 2024, doi: https://doi.org/10.3390/buildings14030657.
- BS EN 196-1, Methods of Testing Cement: Determination of Strength, 2016.
- 12390-2-EQV, Testing Hardened Concrete – Part 2: Making and Curing Specimens for Strength Tests, 2019.
- EN 12390-3, Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens, 2010.
- TS EN 206+A2, Beton – Özellik, Performans, İmalat ve Uygunluk, 2021.
- M. Doğruyol, “Characterisation of acrylic copolymer treated concretes and concretes of reinforced concrete buildings collapsed in the 6 February 2023 Mw = 7.8 Kahramanmaraş (Türkiye) earthquake,” Engineering Failure Analysis, vol. 161, 2024, doi: https://doi.org/10.1016/j.engfailanal.2024.108249.
- N. Thaulow, U. H. Jakobsen, and B. Clark, “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,” 1996.
- B. Baradan, H. Yazıcı, and H. Ün, Betonarme Yapılarda Kalıcılık (Durabilite), DEÜ Mühendislik Fakültesi Yayınları, 2002.
- M. Doğruyol and A. Karaşin, “Sülfatın beton ve betonarme elemanlara olumsuz etkisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 2, no. 2, pp. 79–85, 2011.
Antep Fıstığı Kabuğu Külünün Beton Performansı Üzerindeki Etkisi
Year 2025,
Volume: 14 Issue: 1, 513 - 528, 26.03.2025
Murat Doğruyol
,
Mahmut Durmaz
Abstract
Çimento üretimi, küresel enerji tüketimine ve karbondioksit emisyonlarına en büyük katkıyı sağlayan unsurdur. Günümüzde beton kalitesini artırmak ve çimento tasarrufu sağlamak için birçok çalışma yürütülmektedir. Bu çalışmada, yakıt olarak kullanılan Antep fıstığı külü (PSA), beton karışımında ağırlıkça %3, 5 ve 10 oranlarında CEM I 42.5 R çimentosu ile değiştirilmiştir. PSA'nın betonun fiziksel ve mekanik özellikleri üzerindeki etkisi belirlenmiş ve sonuçlar taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını (EDX) ve X-ışını kırınımı (XRD) gibi mikroyapısal analizlerle desteklenmiştir. Deneyler sonucunda, PSA ikame oranı arttıkça numunelerin su ihtiyacı artmış ve işlenebilirlik azalmıştır. Betonun işlenebilirliği ve dayanım kaybı %3 PSA ikamesinde neredeyse değişmezken, %10 PSA ikamesinde betonun hem işlenebilirliği hem de dayanımı sırasıyla %50 ve %42,7 oranında azalmıştır.
Project Number
Siirt University Scientific Research Projects Unit (2018-SİÜMÜH-040)
References
- C. Zhang, H. Khorshidi, E. Najafi, and M. Ghasemi, “Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review,” Journal of Cleaner Production, vol. 384, Art. no. 135390, 2023, doi: https://doi.org/10.1016/j.jclepro.2022.135390.
- B. Kanagaraj, N. Anand, U. J. Alengaram, S. Raj R, and G. Jayakumar, “Promulgation of engineering and sustainable performances of self-compacting geopolymer concrete,” Journal of Building Engineering, vol. 68, Art. no. 106093, 2023, doi: https://doi.org/10.1016/j.jobe.2023.106093.
- A. Karaşin and M. Doğruyol, “An experimental study on strength and durability for utilization of fly ash in concrete mix,” Advances in Materials Science and Engineering, vol. 2014, 2014, doi: https://doi.org/10.1155/2014/417514.
- A. M. Rashad, “A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Natural Resources Conservation and Research, vol. 1, 2018, doi: https://doi.org/10.24294/nrcr.v1i2.752.
- A. Gültekin, “Properties of basalt fiber-reinforced lightweight geopolymer mortars produced with expanded glass aggregate,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 205–215, 2024, doi: https://doi.org/10.17798/bitlisfen.1379342.
- Z. F. Uruk and A. K. Külünkoğlu İslamoğlu, “BREEAM, LEED ve DGNB yeşil bina sertifikasyon sistemlerinin standart bir konutta karşılaştırılması,” European Journal of Science and Technology, pp. 143–154, 2019, doi: https://doi.org/10.31590/ejosat.512291.
- M. Doğruyol, “Diyarbakır bazaltının mineral katkıları ile kullanılmasının betonun dayanım ve dayanıklılığına etkisi,” M.S. thesis, Dicle Üniversitesi, 2017.
- S. G. Gok and O. Sengul, “Mechanical properties of alkali-activated slag based SIFCON incorporating waste steel fibers and waste glass,” Construction and Building Materials, vol. 408, Art. no. 133697, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.133697.
- M. Doğruyol, “Characterization of historic mortars and the effect of rice husk ash (RHA) on quicklime,” Case Studies in Construction Materials, vol. 21, 2024, doi: https://doi.org/10.1016/j.cscm.2024.e03542.
- P. K. Mehta, Concrete: Structure, Properties and Materials, 1986.
- V. M. Malhotra and P. K. Mehta, High-Performance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice, and Case Histories, 2002.
- A. Neville, “The confused world of sulfate attack on concrete,” Cement and Concrete Research, vol. 34, pp. 1275–1296, 2004, doi: https://doi.org/10.1016/j.cemconres.2004.04.004.
- S. G. Gok and O. Sengul, “The use of waste glass as an activator in alkali-activated slag mortars,” Proceedings of the Institution of Civil Engineers - Engineering Sustainability, vol. 174, pp. 120–130, 2021, doi: https://doi.org/10.1680/jensu.19.00070.
- M. Doğruyol, E. Ayhan, and A. Karaşin, “Effect of waste steel fiber use on concrete behavior at high temperature,” Case Studies in Construction Materials, vol. 20, 2024, doi: https://doi.org/10.1016/j.cscm.2024.e03051.
- S. G. Gök, I. Kılıç, and O. Sengul, “Properties of alkali-activated roller compacted concretes produced from waste aggregates,” Cement Wapno Beton, vol. 26, pp. 352–363, 2021, doi: https://doi.org/10.32047/CWB.2021.26.4.7.
- E. Ayhan, M. Doğruyol, F. Kıpçak, and A. Karaşin, “Atık taşıt lastik çelik lifinin beton davranışına etkisi,” DÜMF Mühendislik Dergisi, 2024, doi: https://doi.org/10.24012/dumf.1468070.
- Ready-mixed concrete industry statistic, ERMCO, 2019.
- Global Statistical Review, Nuts and Dried Fruits Global Statistical Review, 2014–2015.
- A. Karasin, M. Hadzima-Nyarko, E. Işık, M. Doğruyol, I. B. Karasin, and S. Czarnecki, “The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks,” Materials, vol. 15, 2022, doi: https://doi.org/10.3390/ma15041581.
- L. Lam, Y. L. Wong, and C. S. Poon, “Effect of fly ash and silica fume on compressive and fracture behaviors of concrete,” Cement and Concrete Research, vol. 28, no. 2, pp. 271–283.
- F. Z. Çiçek, R. Pekgökgöz, S. B. Kazanasmaz, A. Sarıışık, and F. Avcil, “Effect of fly ash and metakaolin substituted forms on structural properties in light mortar with pumice aggregate,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 709–722, 2024, doi: https://doi.org/10.17798/bitlisfen.1479126.
- R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. Khan, and J. Mirza, “Reduction in environmental problems using rice-husk ash in concrete,” Construction and Building Materials, vol. 30, pp. 360–365, 2012.
- S. Yıldız, İ. Balaydın, and Z. Ç. Ulucan, “Pirinç kabuğu külünün beton dayanımına etkisi,” Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 19, no. 1, pp. 85–91, 2007.
- İ. Tekin, İ. Dirikolu, and H. S. Gökçe, “A regional supplementary cementitious material for the cement industry: Pistachio shell ash,” Journal of Cleaner Production, vol. 285, Art. no. 124810, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.124810.
- Turkish Statistical Institute (TUIK), Pistachio Statistics (Vol. 2), 2018.
- J. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels,” Fuel, vol. 84, no. 5, pp. 487–494, 2005.
- R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, “A review on biomass as a fuel for boilers,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2262–2289, 2011.
- A. Taghizadeh-Alisaraei, H. A. Assar, B. Ghobadian, and A. Motevali, “Potential of biofuel production from pistachio waste in Iran,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 510–522, 2017.
- Y. Baran, H. S. Gökçe, and M. Durmaz, “Physical and mechanical properties of cement containing regional hazelnut shell ash wastes,” Journal of Cleaner Production, vol. 259, Art. no. 120965, 2020.
- J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama, and F. Nasir Ani, “Preparing activated carbon from various nutshells by chemical activation with K₂CO₃,” Carbon, vol. 40, pp. 2381–2386, 2002, doi: https://doi.org/10.1016/S0008-6223(02)00118-5.
- N. Raghavan, S. Thangavel, and G. Venugopal, “A short review on preparation of graphene from waste and bioprecursors,” Applied Materials Today, vol. 7, pp. 246–254, 2017, doi: https://doi.org/10.1016/j.apmt.2017.04.005.
- L. Tosti, A. van Zomeren, J. R. Pels, A. Damgaard, and R. N. J. Comans, “Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products,” Journal of Cleaner Production, vol. 245, Art. no. 118937, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118937.
- M. Du, H. Jing, Y. Gao, H. Su, and H. Fang, “Carbon nanomaterials enhanced cement-based composites: Advances and challenges,” Nanotechnology Reviews, vol. 9, pp. 115–135, 2020, doi: https://doi.org/10.1515/ntrev-2020-0011.
- ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, USA, 2003.
- Y. T. Erdoğan, Materials of Construction, M.E.T.U. Press, Ankara, 2002.
- M. Shakouri, C. L. Exstrom, S. Ramanathan, and P. Suraneni, “Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash,” Construction and Building Materials, vol. 243, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.118171.
- J. Kamau, A. Ahmed, P. Hirst, and J. Kangwa, “Suitability of corncob ash as a supplementary cementitious material,” International Journal of Materials Science and Engineering, vol. 4, no. 4, pp. 215–228, n.d., doi: https://doi.org/10.17706/ijmse.2016.4.4.215-228.
- M. Doğruyol, “Determination of ASR in concrete using characterization methods,” Buildings, vol. 14, p. 657, 2024, doi: https://doi.org/10.3390/buildings14030657.
- BS EN 196-1, Methods of Testing Cement: Determination of Strength, 2016.
- 12390-2-EQV, Testing Hardened Concrete – Part 2: Making and Curing Specimens for Strength Tests, 2019.
- EN 12390-3, Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens, 2010.
- TS EN 206+A2, Beton – Özellik, Performans, İmalat ve Uygunluk, 2021.
- M. Doğruyol, “Characterisation of acrylic copolymer treated concretes and concretes of reinforced concrete buildings collapsed in the 6 February 2023 Mw = 7.8 Kahramanmaraş (Türkiye) earthquake,” Engineering Failure Analysis, vol. 161, 2024, doi: https://doi.org/10.1016/j.engfailanal.2024.108249.
- N. Thaulow, U. H. Jakobsen, and B. Clark, “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,” 1996.
- B. Baradan, H. Yazıcı, and H. Ün, Betonarme Yapılarda Kalıcılık (Durabilite), DEÜ Mühendislik Fakültesi Yayınları, 2002.
- M. Doğruyol and A. Karaşin, “Sülfatın beton ve betonarme elemanlara olumsuz etkisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 2, no. 2, pp. 79–85, 2011.