Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 561 - 582, 26.03.2025
https://doi.org/10.17798/bitlisfen.1610560

Abstract

References

  • S. Nakamato, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Bus. Rev., 2008.
  • H. Alshahrani et al., “Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues,” Energies, vol. 16, no. 3, 2023, doi: 10.3390/en16031510.
  • N. Eligüzel, “An analysis of the integration of sustainability concepts into blockchain technology,” Int. J. Appl. Methods Electron. Comput., vol. 11, no. 3, pp. 158–164, 2023, doi: 10.58190/ijamec.2023.43.
  • N. Sapra and I. Shaikh, “Impact of Bitcoin mining and crypto market determinants on Bitcoin-based energy consumption,” Manag. Financ., vol. 49, no. 11, pp. 1828–1846, 2023, doi: 10.1108/MF-03-2023-0179.
  • V. Kohli, S. Chakravarty, V. Chamola, K. S. Sangwan, and S. Zeadally, “An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions,” Digit. Commun. Networks, vol. 9, no. 1, pp. 79–89, 2023, doi: 10.1016/j.dcan.2022.06.017.
  • S. Küfeoğlu and M. Özkuran, “Energy Consumption oF Bitcoin Mining,” in Cambridge Working Papers in Economics: 1948, .
  • M. Maiti, “Dynamics of bitcoin prices and energy consumption,” Chaos, Solitons Fractals X, vol. 9, p. 100086, 2022, doi: 10.1016/j.csfx.2022.100086.
  • A. de Vries, “Bitcoin’s energy consumption is underestimated: A market dynamics approach,” Energy Res. Soc. Sci., vol. 70, no. August, p. 101721, 2020, doi: 10.1016/j.erss.2020.101721.
  • D. Das and A. Dutta, “Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?,” Econ. Lett., vol. 186, p. 108530, 2020, doi: 10.1016/j.econlet.2019.108530.
  • J. Li, N. Li, J. Peng, H. Cui, and Z. Wu, “Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies,” Energy, vol. 168, pp. 160–168, 2019, doi: 10.1016/j.energy.2018.11.046.
  • M. Kevser, “Bitcoin as an Alternative Financial Asset: Relations Between Geopolitical Risk, Global Economic Political Uncertainty, and Energy Consumption,” PAMUKKALE J. EURASIAN Socioecon. Stud., vol. 9, no. 2, pp. 117–131, 2022.
  • K. Tissaoui, T. Zaghdoudi, S. Boubaker, B. Hkiri, and M. Talbi, “Testing the Nonlinear Long- and Short-Run Distributional Asymmetries Effects of Bitcoin Prices on Bitcoin Energy Consumption: New Insights through the QNARDL Model and XGBoost Machine-Learning Tool,” Energies, vol. 17, no. 2810, 2024.
  • N. Sapra, I. Shaikh, D. Roubaud, M. Asadi, and O. Grebinevych, “Uncovering Bitcoin’s electricity consumption relationships with volatility and price: Environmental Repercussions,” J. Environ. Manage., vol. 356, no. January, p. 120528, 2024, doi: 10.1016/j.jenvman.2024.120528.
  • A. Syzdykova, “Bitcoin Mining and Energy Consumption of Bitcoin,” J. Econ. Soc. Res., vol. 10, no. 19, pp. 1–15, 2023.
  • T. Zaghdoudi, K. Tissaoui, M. Maâloul, Y. Bahou, and N. Kammoun, “Can Economic, Geopolitical and Energy Uncertainty Indices Predict Bitcoin Energy Consumption? New Evidence from a Machine Learning Approach,” Energies, vol. 12, no. 3245, 2024.
  • Y. Bublyk, O. Borzenko, and A. Hlazova, “Cryptocurrency energy consumption: Analysis, global trends and interaction,” Environ. Econ., vol. 14, no. 2, pp. 49–59, 2023, doi: 10.21511/ee.14(2).2023.04.
  • A. O. Adewuyi, B. A. Wahab, A. K. Tiwari, and H. X. Do, “Do bitcoin electricity consumption and carbon footprint exhibit random walk and bubbles? Analysis with policy implications,” J. Environ. Manage., vol. 367, no. August, p. 121958, 2024, doi: 10.1016/j.jenvman.2024.121958.
  • “Blockchain.com,” 2024. https://www.blockchain.com/explorer/charts (accessed Dec. 14, 2024).
  • D. Kim, D. Ryu, and R. I. Webb, “Does a higher hashrate strengthen Bitcoin network security?,” Financ. Innov., vol. 10, no. 1, 2024, doi: 10.1186/s40854-023-00599-8.
  • X. Zhang, R. Qin, Y. Yuan, and F. Y. Wang, “An Analysis of Blockchain-based Bitcoin Mining Difficulty: Techniques and Principles,” Proc. 2018 Chinese Autom. Congr. CAC 2018, pp. 1184–1189, 2018, doi: 10.1109/CAC.2018.8623140.
  • A. Mikhaylov, H. Dinçer, S. Yüksel, G. Pinter, and Z. A. Shaikh, “Bitcoin mempool growth and trading volumes: Integrated approach based on QROF Multi-SWARA and aggregation operators,” J. Innov. Knowl., vol. 8, no. 3, 2023, doi: 10.1016/j.jik.2023.100378.
  • B. Aygün and H. Arslan, “Block size optimization for PoW consensus algorithm based blockchain applications by using whale optimization algorithm,” Turkish J. Electr. Eng. Comput. Sci., vol. 30, pp. 406–419, 2022, doi: 10.3906/elk-2105-217.
  • M. Karimuzzaman, S. Afroz, M. M. Hossain, and A. Rahman, “Modelling COVID-19 cases and deaths with climate variables using statistical and data science methods,” Soft Comput., vol. 28, no. 21, pp. 12561–12574, 2024, doi: 10.1007/s00500-024-10352-7.
  • A. Vij, K. Saxena, and A. Rana, “Prediction in Stock Price Using of Python and Machine Learning,” 2021 9th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir. ICRITO 2021, pp. 1–4, 2021, doi: 10.1109/ICRITO51393.2021.9596513.
  • “Cambridge Bitcoin Electricity Consumption Index,” University of Cambridge, 2024. https://ccaf.io/cbnsi/cbeci (accessed Dec. 27, 2024).
  • B. Nguyen, C. Morell, and B. De Baets, “Large-scale distance metric learning for k-nearest neighbors regression,” Neurocomputing, vol. 214, pp. 805–814, 2016, doi: 10.1016/j.neucom.2016.07.005.
  • Y. Song, J. Liang, J. Lu, and X. Zhao, “An efficient instance selection algorithm for k nearest neighbor regression,” Neurocomputing, vol. 251, pp. 26–34, 2017, doi: 10.1016/j.neucom.2017.04.018.
  • J. Tanuwijaya and S. Hansun, “LQ45 stock index prediction using k-nearest neighbors regression,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 2388–2391, 2019, doi: 10.35940/ijrte.C4663.098319.
  • J. Chevallier, D. Guégan, and S. Goutte, “Is It Possible to Forecast the Price of Bitcoin?,” Forecasting, vol. 3, no. 2, pp. 377–420, 2021, doi: 10.3390/forecast3020024.
  • A. Gu et al., “Empirical Research for Investment Model Based on VMD-LSTM,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/4185974.
  • K. Cortez, M. D. P. Rodríguez-García, and S. Mongrut, “Exchange market liquidity prediction with the k-nearest neighbor approach: Crypto vs. fiat currencies,” Mathematics, vol. 9, no. 1, pp. 1–15, 2021, doi: 10.3390/math9010056.
  • R. G. Da Silva, M. H. Dal Molin Ribeiro, N. Fraccanabbia, V. C. Mariani, and L. Dos Santos Coelho, “Multi-step ahead Bitcoin Price Forecasting Based on VMD and Ensemble Learning Methods,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi: 10.1109/IJCNN48605.2020.9207152.
  • D. Mayo and H. Elgazzar, “Predicting Cryptocurrency Price Change Direction from Supply-Side Factors via Machine Learning Methods,” 2022 IEEE World AI IoT Congr. AIIoT 2022, pp. 330–336, 2022, doi: 10.1109/AIIoT54504.2022.9817249.
  • S. E. Freeda, T. C. E. Selvan, and I. G. Hemanandhini, “Prediction of Bitcoin Price using Deep Learning Model,” Proc. 5th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2021, no. Iceca, pp. 1702–1706, 2021, doi: 10.1109/ICECA52323.2021.9676048.
  • F. U. Ahmed, M. Ahmed, F. H. Mahi, S. H. Abdullah, and S. A. Suha, “A Comparative Performance Evaluation of Bitcoin Price Prediction Using Machine Learning Techniques,” 2023 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2023 - Proc., pp. 194–198, 2023, doi: 10.1109/ICICT4SD59951.2023.10303490.
  • J. J. Benjamin, R. Surendran, and T. Sampath, “A professional strategy for Bitcoin and Ethereum using Machine Learning for Investors,” 4th Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2022 - Proc., no. Icirca, pp. 798–804, 2022, doi: 10.1109/ICIRCA54612.2022.9985532.
  • M. Geetha Jenifel, R. Anita Jasmine, and D. Umanandhini, “Bitcoin Price Predictive Dynamics Using Machine Learning Models,” 2024 15th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2024, pp. 1–6, 2024, doi: 10.1109/ICCCNT61001.2024.10725542.
  • D. Kawli, A. Chaudhari, P. Ingale, G. Telange, and A. Banik, “Crypto-Visionary Price Forecasting System,” Proc. 5th Int. Conf. Smart Electron. Commun. ICOSEC 2024, no. Icosec, pp. 1645–1650, 2024, doi: 10.1109/ICOSEC61587.2024.10722487.
  • E. Akyildirim, O. Cepni, S. Corbet, and G. S. Uddin, “Forecasting mid-price movement of Bitcoin futures using machine learning,” Ann. Oper. Res., vol. 330, no. 1–2, pp. 553–584, 2023, doi: 10.1007/s10479-021-04205-x.
  • Y. Li et al., “MLBGK: A Novel Feature Fusion Model for Forecasting Stocks Prices: MLBGK: A Novel Feature Fusion Model…: Y. Li et al.,” Comput. Econ., no. 0123456789, 2024, doi: 10.1007/s10614-024-10796-x.

Predicting Bitcoin Mining Energy Consumption Using Machine Learning: A Case for k-Nearest Neighbors Regression

Year 2025, Volume: 14 Issue: 1, 561 - 582, 26.03.2025
https://doi.org/10.17798/bitlisfen.1610560

Abstract

The energy consumption of Bitcoin mining has emerged as a critical topic in cryptocurrency research, influenced by the significant environmental and economic impacts of blockchain activities. This study examines the energy consumption of Bitcoin mining with a dataset that includes essential blockchain variables such as overall hash rate, network difficulty, daily confirmed transactions, mempool size, average block size, and daily Bitcoin output. A new energy consumption indicator is proposed to contribute to the research domain. The proposed indicator better accurately reflects the dynamics of blockchain energy utilization. Various machine learning models, such as Random Forest, Gradient Boosting, Support Vector Regression, and Multi-layer Perceptron, are evaluated, with particular emphasis on k-Nearest Neighbors Regression (k-NNR). The k-NNR model surpassed all other models, with a 𝑅2 value of 0.80427 and a Mean Squared Error (MSE) of 0.00441, indicating its high prediction accuracy. Analysis of feature importance indicated that daily Bitcoin production and block size are significant determinants of energy use. The findings underscore the efficacy of k-NNR in energy modeling, offering insights into Bitcoin's energy dynamics and establishing a foundation for more energy-efficient blockchain systems.

Ethical Statement

The study is complied with research and publication ethics.

Thanks

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

References

  • S. Nakamato, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Bus. Rev., 2008.
  • H. Alshahrani et al., “Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues,” Energies, vol. 16, no. 3, 2023, doi: 10.3390/en16031510.
  • N. Eligüzel, “An analysis of the integration of sustainability concepts into blockchain technology,” Int. J. Appl. Methods Electron. Comput., vol. 11, no. 3, pp. 158–164, 2023, doi: 10.58190/ijamec.2023.43.
  • N. Sapra and I. Shaikh, “Impact of Bitcoin mining and crypto market determinants on Bitcoin-based energy consumption,” Manag. Financ., vol. 49, no. 11, pp. 1828–1846, 2023, doi: 10.1108/MF-03-2023-0179.
  • V. Kohli, S. Chakravarty, V. Chamola, K. S. Sangwan, and S. Zeadally, “An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions,” Digit. Commun. Networks, vol. 9, no. 1, pp. 79–89, 2023, doi: 10.1016/j.dcan.2022.06.017.
  • S. Küfeoğlu and M. Özkuran, “Energy Consumption oF Bitcoin Mining,” in Cambridge Working Papers in Economics: 1948, .
  • M. Maiti, “Dynamics of bitcoin prices and energy consumption,” Chaos, Solitons Fractals X, vol. 9, p. 100086, 2022, doi: 10.1016/j.csfx.2022.100086.
  • A. de Vries, “Bitcoin’s energy consumption is underestimated: A market dynamics approach,” Energy Res. Soc. Sci., vol. 70, no. August, p. 101721, 2020, doi: 10.1016/j.erss.2020.101721.
  • D. Das and A. Dutta, “Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?,” Econ. Lett., vol. 186, p. 108530, 2020, doi: 10.1016/j.econlet.2019.108530.
  • J. Li, N. Li, J. Peng, H. Cui, and Z. Wu, “Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies,” Energy, vol. 168, pp. 160–168, 2019, doi: 10.1016/j.energy.2018.11.046.
  • M. Kevser, “Bitcoin as an Alternative Financial Asset: Relations Between Geopolitical Risk, Global Economic Political Uncertainty, and Energy Consumption,” PAMUKKALE J. EURASIAN Socioecon. Stud., vol. 9, no. 2, pp. 117–131, 2022.
  • K. Tissaoui, T. Zaghdoudi, S. Boubaker, B. Hkiri, and M. Talbi, “Testing the Nonlinear Long- and Short-Run Distributional Asymmetries Effects of Bitcoin Prices on Bitcoin Energy Consumption: New Insights through the QNARDL Model and XGBoost Machine-Learning Tool,” Energies, vol. 17, no. 2810, 2024.
  • N. Sapra, I. Shaikh, D. Roubaud, M. Asadi, and O. Grebinevych, “Uncovering Bitcoin’s electricity consumption relationships with volatility and price: Environmental Repercussions,” J. Environ. Manage., vol. 356, no. January, p. 120528, 2024, doi: 10.1016/j.jenvman.2024.120528.
  • A. Syzdykova, “Bitcoin Mining and Energy Consumption of Bitcoin,” J. Econ. Soc. Res., vol. 10, no. 19, pp. 1–15, 2023.
  • T. Zaghdoudi, K. Tissaoui, M. Maâloul, Y. Bahou, and N. Kammoun, “Can Economic, Geopolitical and Energy Uncertainty Indices Predict Bitcoin Energy Consumption? New Evidence from a Machine Learning Approach,” Energies, vol. 12, no. 3245, 2024.
  • Y. Bublyk, O. Borzenko, and A. Hlazova, “Cryptocurrency energy consumption: Analysis, global trends and interaction,” Environ. Econ., vol. 14, no. 2, pp. 49–59, 2023, doi: 10.21511/ee.14(2).2023.04.
  • A. O. Adewuyi, B. A. Wahab, A. K. Tiwari, and H. X. Do, “Do bitcoin electricity consumption and carbon footprint exhibit random walk and bubbles? Analysis with policy implications,” J. Environ. Manage., vol. 367, no. August, p. 121958, 2024, doi: 10.1016/j.jenvman.2024.121958.
  • “Blockchain.com,” 2024. https://www.blockchain.com/explorer/charts (accessed Dec. 14, 2024).
  • D. Kim, D. Ryu, and R. I. Webb, “Does a higher hashrate strengthen Bitcoin network security?,” Financ. Innov., vol. 10, no. 1, 2024, doi: 10.1186/s40854-023-00599-8.
  • X. Zhang, R. Qin, Y. Yuan, and F. Y. Wang, “An Analysis of Blockchain-based Bitcoin Mining Difficulty: Techniques and Principles,” Proc. 2018 Chinese Autom. Congr. CAC 2018, pp. 1184–1189, 2018, doi: 10.1109/CAC.2018.8623140.
  • A. Mikhaylov, H. Dinçer, S. Yüksel, G. Pinter, and Z. A. Shaikh, “Bitcoin mempool growth and trading volumes: Integrated approach based on QROF Multi-SWARA and aggregation operators,” J. Innov. Knowl., vol. 8, no. 3, 2023, doi: 10.1016/j.jik.2023.100378.
  • B. Aygün and H. Arslan, “Block size optimization for PoW consensus algorithm based blockchain applications by using whale optimization algorithm,” Turkish J. Electr. Eng. Comput. Sci., vol. 30, pp. 406–419, 2022, doi: 10.3906/elk-2105-217.
  • M. Karimuzzaman, S. Afroz, M. M. Hossain, and A. Rahman, “Modelling COVID-19 cases and deaths with climate variables using statistical and data science methods,” Soft Comput., vol. 28, no. 21, pp. 12561–12574, 2024, doi: 10.1007/s00500-024-10352-7.
  • A. Vij, K. Saxena, and A. Rana, “Prediction in Stock Price Using of Python and Machine Learning,” 2021 9th Int. Conf. Reliab. Infocom Technol. Optim. (Trends Futur. Dir. ICRITO 2021, pp. 1–4, 2021, doi: 10.1109/ICRITO51393.2021.9596513.
  • “Cambridge Bitcoin Electricity Consumption Index,” University of Cambridge, 2024. https://ccaf.io/cbnsi/cbeci (accessed Dec. 27, 2024).
  • B. Nguyen, C. Morell, and B. De Baets, “Large-scale distance metric learning for k-nearest neighbors regression,” Neurocomputing, vol. 214, pp. 805–814, 2016, doi: 10.1016/j.neucom.2016.07.005.
  • Y. Song, J. Liang, J. Lu, and X. Zhao, “An efficient instance selection algorithm for k nearest neighbor regression,” Neurocomputing, vol. 251, pp. 26–34, 2017, doi: 10.1016/j.neucom.2017.04.018.
  • J. Tanuwijaya and S. Hansun, “LQ45 stock index prediction using k-nearest neighbors regression,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 2388–2391, 2019, doi: 10.35940/ijrte.C4663.098319.
  • J. Chevallier, D. Guégan, and S. Goutte, “Is It Possible to Forecast the Price of Bitcoin?,” Forecasting, vol. 3, no. 2, pp. 377–420, 2021, doi: 10.3390/forecast3020024.
  • A. Gu et al., “Empirical Research for Investment Model Based on VMD-LSTM,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/4185974.
  • K. Cortez, M. D. P. Rodríguez-García, and S. Mongrut, “Exchange market liquidity prediction with the k-nearest neighbor approach: Crypto vs. fiat currencies,” Mathematics, vol. 9, no. 1, pp. 1–15, 2021, doi: 10.3390/math9010056.
  • R. G. Da Silva, M. H. Dal Molin Ribeiro, N. Fraccanabbia, V. C. Mariani, and L. Dos Santos Coelho, “Multi-step ahead Bitcoin Price Forecasting Based on VMD and Ensemble Learning Methods,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi: 10.1109/IJCNN48605.2020.9207152.
  • D. Mayo and H. Elgazzar, “Predicting Cryptocurrency Price Change Direction from Supply-Side Factors via Machine Learning Methods,” 2022 IEEE World AI IoT Congr. AIIoT 2022, pp. 330–336, 2022, doi: 10.1109/AIIoT54504.2022.9817249.
  • S. E. Freeda, T. C. E. Selvan, and I. G. Hemanandhini, “Prediction of Bitcoin Price using Deep Learning Model,” Proc. 5th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2021, no. Iceca, pp. 1702–1706, 2021, doi: 10.1109/ICECA52323.2021.9676048.
  • F. U. Ahmed, M. Ahmed, F. H. Mahi, S. H. Abdullah, and S. A. Suha, “A Comparative Performance Evaluation of Bitcoin Price Prediction Using Machine Learning Techniques,” 2023 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2023 - Proc., pp. 194–198, 2023, doi: 10.1109/ICICT4SD59951.2023.10303490.
  • J. J. Benjamin, R. Surendran, and T. Sampath, “A professional strategy for Bitcoin and Ethereum using Machine Learning for Investors,” 4th Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2022 - Proc., no. Icirca, pp. 798–804, 2022, doi: 10.1109/ICIRCA54612.2022.9985532.
  • M. Geetha Jenifel, R. Anita Jasmine, and D. Umanandhini, “Bitcoin Price Predictive Dynamics Using Machine Learning Models,” 2024 15th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2024, pp. 1–6, 2024, doi: 10.1109/ICCCNT61001.2024.10725542.
  • D. Kawli, A. Chaudhari, P. Ingale, G. Telange, and A. Banik, “Crypto-Visionary Price Forecasting System,” Proc. 5th Int. Conf. Smart Electron. Commun. ICOSEC 2024, no. Icosec, pp. 1645–1650, 2024, doi: 10.1109/ICOSEC61587.2024.10722487.
  • E. Akyildirim, O. Cepni, S. Corbet, and G. S. Uddin, “Forecasting mid-price movement of Bitcoin futures using machine learning,” Ann. Oper. Res., vol. 330, no. 1–2, pp. 553–584, 2023, doi: 10.1007/s10479-021-04205-x.
  • Y. Li et al., “MLBGK: A Novel Feature Fusion Model for Forecasting Stocks Prices: MLBGK: A Novel Feature Fusion Model…: Y. Li et al.,” Comput. Econ., no. 0123456789, 2024, doi: 10.1007/s10614-024-10796-x.
There are 40 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Article
Authors

Nazmiye Eligüzel 0000-0001-6354-8215

Sena Aydoğan 0000-0003-1267-1779

Publication Date March 26, 2025
Submission Date December 31, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE N. Eligüzel and S. Aydoğan, “Predicting Bitcoin Mining Energy Consumption Using Machine Learning: A Case for k-Nearest Neighbors Regression”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 561–582, 2025, doi: 10.17798/bitlisfen.1610560.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS