Araştırma Makalesi
BibTex RIS Kaynak Göster

Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks

Yıl 2022, Cilt: 4 Sayı: 2, 212 - 226, 26.10.2022
https://doi.org/10.46387/bjesr.1157160

Öz

Poultry meat containing low fat and high protein is an important and economical protein source in providing the animal protein requirement for human nutrition. The frequent emergence of poultry diseases such as avian influenza is the feature of fast-spread in farms seriously threatens both the economy and human health. In this study, neural network (NNs) models are proposed for the classification of broiler chickens as healthy and sick for earlier detection of poultry diseases. The NNs used in the classification are artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM). In the literature, the data set which includes seven visual features were acquired through the IPTs and was used for training, testing, and validating the process of NN models. The results point out that, the computer vision-based application using NNs is successfully classified the broilers in terms of their health conditions.

Kaynakça

  • Referans1. A. C. Fanatico et al., “Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access,” Poultry Science, vol. 86, no. 10, pp. 2245-2255, 2007.
  • Referans2. S. Haykin, “Neural networks: A comprehensive foundation,” Macmillan College Publishing Company, New York, USA: hardbound, 1994, pp. 696.
  • Referans3. K. Sabanci, A. Kayabasi, and A, Toktas, “Computer vision‐based method for classification of wheat grains using artificial neural network,” J Sci Food Agric, vol. 97, no. 8, pp. 2588-2593, 2017.
  • Referans4. JS. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans SystMan Cybern, vol. 23, no. 3, pp. 665-685, 1993.
  • Referans5. K. Sabanci, A. Toktas, A. Kayabasi, “Grain classifier with computer vision using adaptive neuro‐fuzzy inference system,” J Sci Food Agric, vol. 97, no. 12, pp. 3994-4000, 2017.
  • Referans6. VN. Vapnik, “Statistical Learning Theory,” Wiley, New York, USA (1998).
  • Referans7. A. Kayabasi, A. Toktas, K. Sabanci, and E. Yigit, “Automatic classification of agricultural grains: Comparison of neural networks,” Neural Netw World, vol. 28, no. 3, pp. 213-224, 2018.
  • Referans8. X. Zhuang, M. Bi, J. Guo, S. Wu, and T. Zhang, “Development of an early warning algorithm to detect sick broilers,” Comput Electron Agric, vol. 144, pp. 102-113, 2018.
  • Referans9. MBR. Mollah, MA. Hasan, MA. Salam, and MA. Ali, “Digital image analysis to estimate the live weight of broiler,” Comput Electron Agric, vol. 72, no. 1, pp. 48-52, 2010.
  • Referans10. HRH. Matin, AA. Saki, MB. Varkeshi, and HZ. Abyaneh, “Comparison and validation of artificial intelligence techniques to estimate intestinal broiler microflora,” Neural Comput Appl, vol. 23, no. 1, pp. 61-66, 2013.
  • Referans11. A. Aydin, “Development of an early detection system for the lameness of broilers using computer vision,” Comput Electron Agr, vol. 136, pp. 140-146, 2017.
  • Referans12. DF. Pereira, BC. Miyamoto, GD. Maia, GT. Sales, MM. Magalhães, and RS. Gates, “Machine vision to identify broiler breeder behaviour,” Comput Electron Agric, vol. 99, pp. 194-199, 2013.
  • Referans13. PFP. Ferraz, T. Yanagi Junior, H. Julio, Y. Fabián, JDO. Castro, RS. Gates and AT. Campos, “Predicting chick body mass by artificial intelligence-based models,” Pesqui Agropecu Bras, vol. 49, no. 7, pp. 559-568, 2014.
  • Referans14. AK. Mortensen, P. Lisouski, and P. Ahrendt, “Weight prediction of broiler chickens using 3D computer vision,” Comput Electron Agric, vol. 123, pp. 319-326, 2016.
  • Referans15. MT. Hagan, and MB. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Trans Neural Netw, vol. 5, no. 6, pp. 989-993, 1994.
  • Referans16. T. Temel, “A new classification algorithm: optimally generalized learning vector quantization (OGLVQ),” Neural Netw World, vol. 27, no. 6, pp. 569-576, 2017.
  • Referans17. T. Zhang, M. Bi, J. Guo, and X. Zhuang, “Data for: Broiler chickens posture feature extraction and disease early-warning algorithm,” Mendeley Data, 2017.
  • Referans18. T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans SystMan Cybern, vol. 15, pp. 116-132, 1985.
  • Referans19. N. Cristianini, and J. Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,” Cambridge University Press, 2000.

Sağlıklı ve Hasta Etlik Piliçlerin Kuş Gribi Açısından Yapay Sinir Ağları Kullanarak Otomatik Sınıflandırılması

Yıl 2022, Cilt: 4 Sayı: 2, 212 - 226, 26.10.2022
https://doi.org/10.46387/bjesr.1157160

Öz

Düşük yağ ve yüksek protein içeren kanatlı eti, insan beslenmesi için hayvansal protein ihtiyacının sağlanmasında önemli ve ekonomik bir protein kaynağıdır. Çiftliklerde hızlı yayılma özelliği olan kuş gribi gibi kanatlı hastalıklarının sıklıkla ortaya çıkması hem ekonomiyi hem de insan sağlığını ciddi şekilde tehdit etmektedir. Bu çalışmada, kanatlı hastalıklarının erken tespiti için etlik piliçlerin sağlıklı ve hasta olarak sınıflandırılması için sinir ağı (NN'ler) modelleri önerilmiştir. Sınıflandırmada kullanılan NN'ler yapay sinir ağı (YSA), uyarlanabilir nöro-bulanık çıkarım sistemi (ANFIS) ve destek vektör makinesidir (SVM). Literatürde, IPT'ler aracılığıyla yedi görsel özellik içeren veri seti elde edilmiş ve NN modellerinin eğitimi, test edilmesi ve doğrulanması için kullanılmıştır. Sonuçlar, NN'leri kullanan bilgisayarlı görü tabanlı uygulamanın, piliçleri sağlık koşulları açısından başarıyla sınıflandırdığını göstermektedir.

Kaynakça

  • Referans1. A. C. Fanatico et al., “Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access,” Poultry Science, vol. 86, no. 10, pp. 2245-2255, 2007.
  • Referans2. S. Haykin, “Neural networks: A comprehensive foundation,” Macmillan College Publishing Company, New York, USA: hardbound, 1994, pp. 696.
  • Referans3. K. Sabanci, A. Kayabasi, and A, Toktas, “Computer vision‐based method for classification of wheat grains using artificial neural network,” J Sci Food Agric, vol. 97, no. 8, pp. 2588-2593, 2017.
  • Referans4. JS. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans SystMan Cybern, vol. 23, no. 3, pp. 665-685, 1993.
  • Referans5. K. Sabanci, A. Toktas, A. Kayabasi, “Grain classifier with computer vision using adaptive neuro‐fuzzy inference system,” J Sci Food Agric, vol. 97, no. 12, pp. 3994-4000, 2017.
  • Referans6. VN. Vapnik, “Statistical Learning Theory,” Wiley, New York, USA (1998).
  • Referans7. A. Kayabasi, A. Toktas, K. Sabanci, and E. Yigit, “Automatic classification of agricultural grains: Comparison of neural networks,” Neural Netw World, vol. 28, no. 3, pp. 213-224, 2018.
  • Referans8. X. Zhuang, M. Bi, J. Guo, S. Wu, and T. Zhang, “Development of an early warning algorithm to detect sick broilers,” Comput Electron Agric, vol. 144, pp. 102-113, 2018.
  • Referans9. MBR. Mollah, MA. Hasan, MA. Salam, and MA. Ali, “Digital image analysis to estimate the live weight of broiler,” Comput Electron Agric, vol. 72, no. 1, pp. 48-52, 2010.
  • Referans10. HRH. Matin, AA. Saki, MB. Varkeshi, and HZ. Abyaneh, “Comparison and validation of artificial intelligence techniques to estimate intestinal broiler microflora,” Neural Comput Appl, vol. 23, no. 1, pp. 61-66, 2013.
  • Referans11. A. Aydin, “Development of an early detection system for the lameness of broilers using computer vision,” Comput Electron Agr, vol. 136, pp. 140-146, 2017.
  • Referans12. DF. Pereira, BC. Miyamoto, GD. Maia, GT. Sales, MM. Magalhães, and RS. Gates, “Machine vision to identify broiler breeder behaviour,” Comput Electron Agric, vol. 99, pp. 194-199, 2013.
  • Referans13. PFP. Ferraz, T. Yanagi Junior, H. Julio, Y. Fabián, JDO. Castro, RS. Gates and AT. Campos, “Predicting chick body mass by artificial intelligence-based models,” Pesqui Agropecu Bras, vol. 49, no. 7, pp. 559-568, 2014.
  • Referans14. AK. Mortensen, P. Lisouski, and P. Ahrendt, “Weight prediction of broiler chickens using 3D computer vision,” Comput Electron Agric, vol. 123, pp. 319-326, 2016.
  • Referans15. MT. Hagan, and MB. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Trans Neural Netw, vol. 5, no. 6, pp. 989-993, 1994.
  • Referans16. T. Temel, “A new classification algorithm: optimally generalized learning vector quantization (OGLVQ),” Neural Netw World, vol. 27, no. 6, pp. 569-576, 2017.
  • Referans17. T. Zhang, M. Bi, J. Guo, and X. Zhuang, “Data for: Broiler chickens posture feature extraction and disease early-warning algorithm,” Mendeley Data, 2017.
  • Referans18. T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans SystMan Cybern, vol. 15, pp. 116-132, 1985.
  • Referans19. N. Cristianini, and J. Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,” Cambridge University Press, 2000.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka
Bölüm Araştırma Makaleleri
Yazarlar

Yalçın Işık 0000-0001-9223-5381

Ahmet Kayabaşı 0000-0002-9756-8756

Yayımlanma Tarihi 26 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Işık, Y., & Kayabaşı, A. (2022). Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 4(2), 212-226. https://doi.org/10.46387/bjesr.1157160
AMA Işık Y, Kayabaşı A. Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks. Müh.Bil.ve Araş.Dergisi. Ekim 2022;4(2):212-226. doi:10.46387/bjesr.1157160
Chicago Işık, Yalçın, ve Ahmet Kayabaşı. “Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 4, sy. 2 (Ekim 2022): 212-26. https://doi.org/10.46387/bjesr.1157160.
EndNote Işık Y, Kayabaşı A (01 Ekim 2022) Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks. Mühendislik Bilimleri ve Araştırmaları Dergisi 4 2 212–226.
IEEE Y. Işık ve A. Kayabaşı, “Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks”, Müh.Bil.ve Araş.Dergisi, c. 4, sy. 2, ss. 212–226, 2022, doi: 10.46387/bjesr.1157160.
ISNAD Işık, Yalçın - Kayabaşı, Ahmet. “Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks”. Mühendislik Bilimleri ve Araştırmaları Dergisi 4/2 (Ekim 2022), 212-226. https://doi.org/10.46387/bjesr.1157160.
JAMA Işık Y, Kayabaşı A. Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks. Müh.Bil.ve Araş.Dergisi. 2022;4:212–226.
MLA Işık, Yalçın ve Ahmet Kayabaşı. “Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 4, sy. 2, 2022, ss. 212-26, doi:10.46387/bjesr.1157160.
Vancouver Işık Y, Kayabaşı A. Automatic Classification of Healthy and Sick Broilers in Terms of Avian Influenza by Using Neural Networks. Müh.Bil.ve Araş.Dergisi. 2022;4(2):212-26.