Araştırma Makalesi
BibTex RIS Kaynak Göster

Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi

Yıl 2024, Cilt: 6 Sayı: 2, 143 - 152, 29.10.2024
https://doi.org/10.46387/bjesr.1464437

Öz

Güç sistemlerinde yer alan senkron generatörlerin talep edilen gücün karşılanabilmesi amacıyla maksimum limitlerde çalıştırılması, hat arızaları veya çeşitli mekanik problemlere neden olur. Bu durum, generatörlerin rotor tarafında düşük frekanslı salınımlar meydana gelmesine yol açar. Sistemde oluşan salınımların sönümlenmesi amacıyla sıklıkla kullanılan denetleyici yapılarının başında, güç sistemi kararlı kılıcısı gelmektedir. Bu denetleyicilerin en uygun parametre değerlerinin belirlenmesi, salınımların etkili bir şekilde sönümlenmesi ve sistem kararlılığının sağlanması açısından oldukça önemlidir. Bu çalışmada, güç sistemi kararlı kılıcısı parametrelerinin en uygun değerlerinin belirlenmesi amacıyla uygunluk mesafe dengesi tabanlı parçacık sürü optimizasyonu kullanılmıştır. Önerilen algoritmanın çok makineli bir güç sistemindeki etkisini test edebilmek amacıyla, farklı arıza senaryoları için elde edilen sistem yanıtlarına ve performans indekslerine bağlı olarak karşılaştırmalar yapılmıştır. Sonuçlar, uygunluk mesafesi dengesine dayalı parçacık sürü optimizasyonu ile elde edilen güç sistemi kararlı kılıcısı parametrelerinin, diğer algoritmalarla belirlenen parametrelere göre sistem kararlılığı açısından daha etkili sonuçlar verdiğini göstermektedir.

Etik Beyan

Bu çalışma Düzce Üniversitesi Bilimsel Araştırma Projesi (Proje No:2022.06.03.1281 ) tarafından desteklenmiştir.

Destekleyen Kurum

Düzce Üniversitesi

Proje Numarası

2022.06.03.1281

Teşekkür

Bu çalışma Düzce Üniversitesi Bilimsel Araştırma Projesi (Proje No:2022.06.03.1281 ) tarafından desteklenmiştir.

Kaynakça

  • D. Mondal, A. Chakrabarti, and A. Sengupta, “Power system small signal stability analysis and control”, Academic Press, 2020.
  • D. Chitara, K.R. Niazi, A. Swarnkar and N. Gupta, ‘‘Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer, ’’ IEEE Transactions on Industry Applications, vol .54, no.4, pp. 3056-3065, 2018..
  • M. Jokarzadeh, M. Abedini, and A. Seifi, ‘‘Improving power system damping using a combination of optimal control theory and differential evolution algorithm, ’’ ISA transactions, vol. 90, pp. 169-177, 2019.
  • F.P. Demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Transactions on power apparatus and systems, vol. 88, no. 4, pp. 316-329, 1969.
  • E. Larsen and D. Swann, “Applying power system stabilizers part I: general concepts, ” IEEE Trans Power Appar Syst., vol.100, no.6, pp. 3017-3024,1981.
  • E. Larsen and D. Swann, “Applying power system stabilizers part III: practical considerations,” IEEE Trans Power Appar Syst., vol.100, no.6, pp. 3034-3046, 1981.
  • M.J. Gibbard, “Coordinated design of multimachine power system stabilisers based on damping torque concepts,” IEE Proceedings - Generation, Transmission and Distribution., vol.135, no.4, pp.276,1988.
  • P. Kundur, M. Klein, G.J. Rogers and M.S. Zywno, “Application of power system stabilizers for enhancement of overall system stability,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 614–626, 1989.
  • L.Abualigah, D. Yousri, and M.A Elaziz, “Aquila optimizer: a novel meta-heuristic optimization algorithm,” Comput Ind Eng. https:// doi. org/ 10. 1016/j. cie. 2021. 107250, 2021.
  • L.H. Hassan , M. Moghavvemi, H.A. Almurib, K.M. Muttaqi, V.G. Ganapathy, “Optimization of power system stabilizers using participation factor and genetic algorithm,” International Journal of Electrical Power & Energy Systems, vol. 55, pp. 668-679, 2014.
  • K. Sebaa and M. Boudour, “Optimal allocations and tuning of robust power system stabilizer using genetic algorithms,” Electr Power Syst Res.,vol.79, no.2, pp. 406–416, 2009.
  • M.A. Abido, “Optimal design of power-system stabilizers using particle swarm optimization, ” IEEE transactions on energy conversion, vol.17, no. 3, pp. 406-413, 2002.
  • S.M. Abd-Elazim and E.S. Ali, “Power system stability enhancement via bacteria foraging optimization algorithm,” Arabian Journal for Science and Engineering, vol.38, no. 3, pp.599-611, 2013.
  • M. Mohammadi and N. Ghadimi, “Optimal location and optimized parameters for robust power system stabilizer using honeybee mating optimization,” Complexity, vol.21, no.1,pp. 242-258, 2015.
  • S.M. Abd-Elazim and E.S. Ali, “Optimal power system stabilizers design via cuckoo search algorithm,” International Journal of Electrical Power & Energy Systems, vol.75, pp. 99-107, 2016.
  • S. Ekinci, “Optimal design of power system stabilizer using sine cosine algorithm,” J Fac Eng Archit Gazi Univ., vol.34, no.3, pp. 1329-1350, 2019.
  • D. Butti, S.K. Mangipudi, and S.R. Rayapudi, “An improved whale optimization algorithm for the design of multi‐machine power system stabilizer, ” International Transactions on Electrical Energy Systems, vol. 30, no. 5, pp. e12314, 2020.
  • R. Devarapalli, B. Bhattacharyya, N.K. Sinha, and B. Dey, “Amended GWO approach based multi-machine power system stability enhancement, ” ISA transactions, vol. 109, pp. 152-174, 2021.
  • B. Morales-Castañeda, D.Zaldivar, E. Cuevas, F. Fausto and A. Rodríguez, “A better balance in metaheuristic algorithms: Does it exist? , ” Swarm and Evolutionary Computation, vol. 54, pp. 100671, 2020.
  • J. Xu and J. Zhang, “Exploration-exploitation tradeoffs in metaheuristics: survey and analysis, ” in: Proc. 33rd Chinese Control Conf, (CCC), pp. 8633–8638, 2014.
  • M.Z. Ali, N.H. Awad, R.G. Reynolds, and P.N. Suganthan, “A balanced fuzzy cultural algorithm with a modified levy flight search for real parameter optimization, ” Inform. Sci. vol. 447, pp. 12–35, 2018.
  • H.T Kahraman, S.Aras, and E.Gedikli, “Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms,” Knowledge-Based Systems, vol. 190, pp. 105169, 2020.
  • S Ekinci, “Çok makinalı güç sisteminde açısal kararlılık analizi ve kontrolör parametre Optimizasyonu,” (Doktora tezi Fen Bilimleri Enstitüsü), 2015.
  • A. Farah, T.Guesmi, H.H. Abdallah, and A. Ouali. “A novel chaotic teaching–learning-based optimization algorithm for multi-machine power system stabilizers design problem,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 197-209, 2016.
  • P.W.Sauer and M.A. Pai, “Power System Dynamics and Stability, ” Urbana: Pearson Education, 1998.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization, ” in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43, 1995.
  • Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, pp. 69–73, 1998.
  • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans.Evol. Comput., pp. 281–295, 2006.
  • H.T Kahraman, S. Aras, and E.Gedikli, “Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms, ” Knowledge-Based Systems, vol. 190, pp. 105169, 2020.

Determination of Power System Stabilizer Parameters Using Fitness Distance Balance Based Particle Swarm Optimization

Yıl 2024, Cilt: 6 Sayı: 2, 143 - 152, 29.10.2024
https://doi.org/10.46387/bjesr.1464437

Öz

Operating synchronous generators in power systems at maximum limits in order to meet the requested power causes line failures or various mechanical problems. This situation leads to low-frequency oscillations on the rotor side of the generators. Power system stabilizers are among the controller structures frequently used to dampen oscillations in the system. Determining the optimum parameter values of these controllers is extremely important in terms of effectively damping oscillations and ensuring system stability. In this study, fitness distance balance-based particle swarm optimization was used to determine the optimum parameter values of the power system stabilizer. In order to test the effect of the proposed algorithm on a multi-machine power system, comparisons were made based on the system responses and performance indices obtained for different fault scenarios. Results show that the power system stabilizer parameters obtained by fitness distance balance-based particle swarm optimization provide more effective system stability than those obtained with other algorithms.

Proje Numarası

2022.06.03.1281

Kaynakça

  • D. Mondal, A. Chakrabarti, and A. Sengupta, “Power system small signal stability analysis and control”, Academic Press, 2020.
  • D. Chitara, K.R. Niazi, A. Swarnkar and N. Gupta, ‘‘Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer, ’’ IEEE Transactions on Industry Applications, vol .54, no.4, pp. 3056-3065, 2018..
  • M. Jokarzadeh, M. Abedini, and A. Seifi, ‘‘Improving power system damping using a combination of optimal control theory and differential evolution algorithm, ’’ ISA transactions, vol. 90, pp. 169-177, 2019.
  • F.P. Demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Transactions on power apparatus and systems, vol. 88, no. 4, pp. 316-329, 1969.
  • E. Larsen and D. Swann, “Applying power system stabilizers part I: general concepts, ” IEEE Trans Power Appar Syst., vol.100, no.6, pp. 3017-3024,1981.
  • E. Larsen and D. Swann, “Applying power system stabilizers part III: practical considerations,” IEEE Trans Power Appar Syst., vol.100, no.6, pp. 3034-3046, 1981.
  • M.J. Gibbard, “Coordinated design of multimachine power system stabilisers based on damping torque concepts,” IEE Proceedings - Generation, Transmission and Distribution., vol.135, no.4, pp.276,1988.
  • P. Kundur, M. Klein, G.J. Rogers and M.S. Zywno, “Application of power system stabilizers for enhancement of overall system stability,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 614–626, 1989.
  • L.Abualigah, D. Yousri, and M.A Elaziz, “Aquila optimizer: a novel meta-heuristic optimization algorithm,” Comput Ind Eng. https:// doi. org/ 10. 1016/j. cie. 2021. 107250, 2021.
  • L.H. Hassan , M. Moghavvemi, H.A. Almurib, K.M. Muttaqi, V.G. Ganapathy, “Optimization of power system stabilizers using participation factor and genetic algorithm,” International Journal of Electrical Power & Energy Systems, vol. 55, pp. 668-679, 2014.
  • K. Sebaa and M. Boudour, “Optimal allocations and tuning of robust power system stabilizer using genetic algorithms,” Electr Power Syst Res.,vol.79, no.2, pp. 406–416, 2009.
  • M.A. Abido, “Optimal design of power-system stabilizers using particle swarm optimization, ” IEEE transactions on energy conversion, vol.17, no. 3, pp. 406-413, 2002.
  • S.M. Abd-Elazim and E.S. Ali, “Power system stability enhancement via bacteria foraging optimization algorithm,” Arabian Journal for Science and Engineering, vol.38, no. 3, pp.599-611, 2013.
  • M. Mohammadi and N. Ghadimi, “Optimal location and optimized parameters for robust power system stabilizer using honeybee mating optimization,” Complexity, vol.21, no.1,pp. 242-258, 2015.
  • S.M. Abd-Elazim and E.S. Ali, “Optimal power system stabilizers design via cuckoo search algorithm,” International Journal of Electrical Power & Energy Systems, vol.75, pp. 99-107, 2016.
  • S. Ekinci, “Optimal design of power system stabilizer using sine cosine algorithm,” J Fac Eng Archit Gazi Univ., vol.34, no.3, pp. 1329-1350, 2019.
  • D. Butti, S.K. Mangipudi, and S.R. Rayapudi, “An improved whale optimization algorithm for the design of multi‐machine power system stabilizer, ” International Transactions on Electrical Energy Systems, vol. 30, no. 5, pp. e12314, 2020.
  • R. Devarapalli, B. Bhattacharyya, N.K. Sinha, and B. Dey, “Amended GWO approach based multi-machine power system stability enhancement, ” ISA transactions, vol. 109, pp. 152-174, 2021.
  • B. Morales-Castañeda, D.Zaldivar, E. Cuevas, F. Fausto and A. Rodríguez, “A better balance in metaheuristic algorithms: Does it exist? , ” Swarm and Evolutionary Computation, vol. 54, pp. 100671, 2020.
  • J. Xu and J. Zhang, “Exploration-exploitation tradeoffs in metaheuristics: survey and analysis, ” in: Proc. 33rd Chinese Control Conf, (CCC), pp. 8633–8638, 2014.
  • M.Z. Ali, N.H. Awad, R.G. Reynolds, and P.N. Suganthan, “A balanced fuzzy cultural algorithm with a modified levy flight search for real parameter optimization, ” Inform. Sci. vol. 447, pp. 12–35, 2018.
  • H.T Kahraman, S.Aras, and E.Gedikli, “Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms,” Knowledge-Based Systems, vol. 190, pp. 105169, 2020.
  • S Ekinci, “Çok makinalı güç sisteminde açısal kararlılık analizi ve kontrolör parametre Optimizasyonu,” (Doktora tezi Fen Bilimleri Enstitüsü), 2015.
  • A. Farah, T.Guesmi, H.H. Abdallah, and A. Ouali. “A novel chaotic teaching–learning-based optimization algorithm for multi-machine power system stabilizers design problem,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 197-209, 2016.
  • P.W.Sauer and M.A. Pai, “Power System Dynamics and Stability, ” Urbana: Pearson Education, 1998.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization, ” in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43, 1995.
  • Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, pp. 69–73, 1998.
  • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans.Evol. Comput., pp. 281–295, 2006.
  • H.T Kahraman, S. Aras, and E.Gedikli, “Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms, ” Knowledge-Based Systems, vol. 190, pp. 105169, 2020.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Tesisleri
Bölüm Araştırma Makaleleri
Yazarlar

Enes Kaymaz 0000-0002-4774-0773

Uğur Güvenç 0000-0002-5193-7990

Mehmet Kenan Döşoğlu 0000-0001-8804-7070

Proje Numarası 2022.06.03.1281
Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 29 Ekim 2024
Gönderilme Tarihi 3 Nisan 2024
Kabul Tarihi 21 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaymaz, E., Güvenç, U., & Döşoğlu, M. K. (2024). Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(2), 143-152. https://doi.org/10.46387/bjesr.1464437
AMA Kaymaz E, Güvenç U, Döşoğlu MK. Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi. Müh.Bil.ve Araş.Dergisi. Ekim 2024;6(2):143-152. doi:10.46387/bjesr.1464437
Chicago Kaymaz, Enes, Uğur Güvenç, ve Mehmet Kenan Döşoğlu. “Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 6, sy. 2 (Ekim 2024): 143-52. https://doi.org/10.46387/bjesr.1464437.
EndNote Kaymaz E, Güvenç U, Döşoğlu MK (01 Ekim 2024) Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi. Mühendislik Bilimleri ve Araştırmaları Dergisi 6 2 143–152.
IEEE E. Kaymaz, U. Güvenç, ve M. K. Döşoğlu, “Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi”, Müh.Bil.ve Araş.Dergisi, c. 6, sy. 2, ss. 143–152, 2024, doi: 10.46387/bjesr.1464437.
ISNAD Kaymaz, Enes vd. “Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi”. Mühendislik Bilimleri ve Araştırmaları Dergisi 6/2 (Ekim 2024), 143-152. https://doi.org/10.46387/bjesr.1464437.
JAMA Kaymaz E, Güvenç U, Döşoğlu MK. Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi. Müh.Bil.ve Araş.Dergisi. 2024;6:143–152.
MLA Kaymaz, Enes vd. “Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 6, sy. 2, 2024, ss. 143-52, doi:10.46387/bjesr.1464437.
Vancouver Kaymaz E, Güvenç U, Döşoğlu MK. Güç Sistemi Kararlı Kılıcısı Parametrelerinin Uygunluk Mesafe Dengesi Tabanlı Parçacık Sürü Optimizasyonu Kullanılarak Belirlenmesi. Müh.Bil.ve Araş.Dergisi. 2024;6(2):143-52.