Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of hexagonal boron nitride production with luminescent properties

Yıl 2023, , 12 - 18, 30.09.2023
https://doi.org/10.30728/boron.1266900

Öz

Hexagonal boron nitride (hBN) with luminescent properties was synthesized by heat treatment of boric acid, melamine, Eu+3 and Dy+3 at 1200 °C for 1 hour. When boron nitride was excited with UV light, the presence of Eu+3 and Dy+3 ions showed emission from blue to red. The formulation with the highest energy efficiency was determined by using different [Dy+3 / Eu+3] ratios. Emission with high energy efficiency (~0.83) was observed at a rate of [Dy+3 / Eu+3] = 0.5. In addition, it was observed that the luminescence intensity decreased with the increase of the amount of Dy+3 ions. The formation of the non-emitting dysprosium borate (DyBO3) phase effected the luminescence property negatively.

Kaynakça

  • Khan, S. A., Khan, N. Z., Hao, Z., Ji, W. W., Abadikhah, H., Hao, L., Xu, X. & Agathopoulos, S. (2018). Influence of substitution of Al-O for Si-N on improvement of photoluminescence properties and thermal stability of Ba2Si5N8: Eu2+ red emitting phosphors. Journal of Alloys and Compounds, 730, 249-254. https://doi.org/10.1016/j.jallcom.2017.09.335.
  • Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., & Mitomo, M. (2010). Photoluminescence properties of rare earth doped α-Si3N4. Journal of Luminescence, 130(7), 1147- 1153. https://doi.org/10.1016/j.jlumin.2010.02.012.
  • Steckl, A. J., & Birkhahn, R. (1998). Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy. Applied Physics Letters, 73(12), 1700-1702. https://doi.org/10.1063/1.122250.
  • Moon, S., Kim, J., Park, J., Im, S., Kim, J., Hwang, I., & Kim, J. K. (2023). Hexagonal boron nitride for nextgeneration photonics and electronics. Advanced Materials, 35(4), 2204161. https://doi.org/10.1002/ adma.202204161.
  • Jiang, T., Jin, Z., Yang, J., & Qiao, G. (2009). Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process. Journal of Materials Processing Technology, 209(1), 561-571. https://doi.org/10.1016/j.jmatprotec.2008.02.026.
  • Vel, L., Demazeau, G., & Etourneau, J. (1991). Cubic boron nitride: synthesis, physicochemical properties and applications. Materials Science and Engineering: B, 10(2), 149-164. https://doi.org/10.1016/0921-5107(91)90121-B.
  • Singla, P., Goel, N., & Singhal, S. (2015). Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceramics International, 41(9), 10565-10577. https://doi.org/10.1016/j.ceramint.2015.04.15.
  • Ferreira, F., Chaves, A. J., Peres, N. M. R., & Ribeiro, R. M. (2019). Excitons in hexagonal boron nitride singlelayer: a new platform for polaritonics in the ultraviolet. Journal of the Optical Society of America B, 36(3), 674- 683. https://doi.org/10.1364/JOSAB.36.000674.
  • Liang, L., Chen, C., Lv, Z., Xie, M., Yu, Y., Liang, C., Lou, Y., Li, C., & Shi, Z. (2019). Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anticounterfeit fluorescent ink. Journal of Luminescence, 206, 560-564. https://doi.org/10.1016/j.jlumin.2018.10.088.
  • Antoniak, M. A., Grzyb, J., & Nyk, M. (2019). Preserved two-photon optical properties of hydrophilic proteinsconjugated quantum dots. Journal of Luminescence, 209, 57-60. https://doi.org/10.1016/j.jlumin.2019.01.029.
  • Yu, B., Liu, D., Wang, Y., Zhang, T., Zhang, Y. M., Li, M., & Zhang, S. X. A. (2019). A solid-state emissive and solvatofluorochromic fluorophore and its application in high-contrast, fast, and repeatable thermochromic blends. Dyes and Pigments, 163, 412-419. https://doi.org/10.1016/j.dyepig.2018.12.008.
  • Zabiliūtė-Karaliūnė, A., Aglinskaitė, J., & Vitta, P. (2021). The reduction of the thermal quenching effect in laserexcited phosphor converters using highly thermally conductive hBN particles. Scientific Reports, 11(1), 6755. https://doi.org/10.1038/s41598-021-86249-4.
  • Jung, J. Y., Shim, Y. S., Son, C. S., Kim, Y. K., & Hwang, D. (2021). Boron nitride nanoparticle phosphors for use in transparent films for deep-UV detection and White light-emitting diodes. ACS Applied Nano Materials, 4(4), 3529-3536. https://doi.org/10.1021/acsanm.1c00013.
  • Jung, J. Y., Song, B. K., & Kim, Y. K. (2019). Tunable color emission of transparent boron nitride nanophosphors towards anti-counterfeiting application. Journal of Alloys and Compounds, 791, 81-86. https://doi.org/10.1016/j. jallcom.2019.03.269.
  • Jung, J. Y., Baek, Y. K., Lee, J. G., Kim, Y. D., Cho, S. H., & Kim, Y. K. (2018). The structure and luminescence of boron nitride doped with Ce ions. Applied Physics A, 124, 1-6. https://doi.org/10.1007/s00339-018-2054-y.
  • Wu, J., Yin, L., & Zhang, L. (2013). Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce 3+ ions doping. RSC Advances, 3(20), 7408-7418. https://doi.org/10.1039/C3RA23132A.
  • Chen, H., Chen, Y., Li, C. P., Zhang, H., Williams, J. S., Liu, Y., Liu, Z. & Ringer, S. P. (2007). Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source. Advanced Materials, 19(14), 1845-1848. https:// doi.org/10.1002/adma.200700493.
  • Li, Y., Shen, Y., Gong, C., Li, B., Huang, H., & Ji, K. (2018). Synthesis and characterization of boron nitride powder. AIP Conference Proceedings, 1971(1), 020007. https://doi.org/10.1063/1.5041102.
  • Hu, C., Xiao, Y., Zhao, Y., Chen, N., Zhang, Z., Cao, M., & Qu, L. (2013). Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 5(7), 2726-2733. https://doi.org/10.1039/C3NR34002C.
  • Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. https://doi.org/10.1007/ s10853-005-2096-3.
  • Torabi, O., Golabgir, M. H., Tajizadegan, H., & Jamshidi, A. (2016). Mechanochemical behavior of magnesiumboron oxide-melamine ternary system in the synthesis of h-BN nanopowder. Ceramics International, 42(5), 6450- 6456. https://doi.org/10.1016/j.ceramint.2016.01.084
  • Rounaghi, S. A., Rashid, A. K., Eshghi, H., & Khaki, J. V. (2012). Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. Journal of Solid State Chemistry, 190, 8-11. https://doi.org/10.1016/j. jssc.2012.01.005.
  • Zhang, W., Liu, T., & Xu, J. (2016). Preparation and characterization of 10 B boric acid with high purity for nuclear industry. SpringerPlus, 5, 1-10. https://doi. org/10.1186/s40064-016-2310-6.
  • Elbeyli, İ. Y. (2015). Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy, 158, 19-26. https://doi.org/10.1016/j. hydromet.2015.09.022.
  • Islam, M., Chakraborty, A. K., Gafur, M. A., & Rahman, M. (2019). Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Research on Chemical Intermediates, 45(4), 1753- 1773. https://doi.org/10.1007/s11164-018-3703-7.
  • Töre, İ. (2015). Hexagonal boron nitride powder synthesis and sintering behaviours (Council of Higher Education Thesis Number: 198422) [Doctoral Dissertation, Anadolu University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=9FQtSikHPUTz3EQg-LiMOA&no=4PKj1qY5YTP6mTUGfuwp8A.
  • Kırbaş, İ. (2021). Improving the structural and physical properties of boric acid-doped rigid polyurethane materials. Composites and Advanced Materials, 30, 26349833211010819. https://doi. org/10.1177/26349833211010819.
  • Liu, Y., Chen, Z., Zhang, J., Ai, S., & Tang, H. (2019). Ultralight and thermal insulation carbon foam/SiO2 aerogel composites. Journal of Porous Materials, 26(5), 1305-1312. https://doi.org/10.1007/ s10934-019-00732-y.
  • Suryanto, B. H., Fang, T., Cheong, S., Tilley, R. D., & Zhao, C. (2018). From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. Journal of Materials Chemistry A, 6(11), 4686-4694. https://doi.org/10.1039/C7TA11257B.
  • Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123. https://doi.org/10.1016/j.apsusc.2016.07.030.
  • Hernández, M. F., Suárez, G., Cipollone, M., Conconi, M. S., Aglietti, E. F., & Rendtorff, N. M. (2017). Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceramics International, 43(2), 2188-2195. https://doi.org/10.1016/j.ceramint.2016.11.002.
  • Hernández, M. F., Violini, M. A., Serra, M. F., Conconi, M. S., Suarez, G., & Rendtorff, N. M. (2020). Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O 3 effect in clay thermal behavior and resultant ceramics properties. Journal of Thermal Analysis and Calorimetry, 139, 1717-1729. https://doi.org/10.1007/ s10973-019-08563-4.
  • Huber, C., Setoodeh Jahromy, S., Jordan, C., Schreiner, M., Harasek, M., Werner, A., & Winter, F. (2019). Boric acid: a high potential candidate for thermochemical energy storage. Energies, 12(6), 1086. https://doi.org/10.3390/en12061086.
  • Kıvanç, M., Barutca, B., Koparal, A. T., Göncü, Y., Bostancı, S. H., & Ay, N. (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C, 91, 115-124. https://doi.org/10.1016/j.msec.2018.05.028.
  • Singh, B., Kaur, G., Singh, P., Singh, K., Kumar, B., Vij, A., ... & Kumar, A. (2016). Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Scientific Reports, 6(1), 1-10. https://doi.org/10.1038/srep35535.
  • Ansaloni, L. M. S., & de Sousa, E. M. B. (2013). Boron nitride nanostructured: Synthesis, characterization and potential use in cosmetics, Materials Sciences and Applications, 4(1), 22-28. https://doi.org/10.4236/ msa.2013.41004.
  • Ryu, S., Oh, H., & Kim, J. (2019). Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite. Polymers, 11(10), 1628. https://doi.org/10.3390/polym11101628.
  • Weng, Q., Wang, X., Wang, X., Bando, Y., & Golberg, D. (2016). Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 45(14), 3989-4012. https://doi.org/10.1039/C5CS00869G.
  • Wang, J., Ma, F., & Sun, M. (2017). Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 7(27), 16801-16822. https://doi.org/10.1039/C7RA00260B.
  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances, 32(5), 751-767. doi.org/10.1107/S0567739476001551.
  • Sharma, P. K., Dutta, R. K., & Pandey, A. C. (2012). Size-dependent emission efficiency and luminescence characteristics of YBO3: Tb3+ nanocrystals under vacuum ultraviolet excitations.Journal of Applied Physics, 112(5), 054321. https://doi.org/10.1063/1.4751335.

Lüminesans özellik gösteren hekzagonal bor nitrür üretiminin araştırılması

Yıl 2023, , 12 - 18, 30.09.2023
https://doi.org/10.30728/boron.1266900

Öz

Lüminesans özellik gösteren hekzagonal bor nitrür (hBN) borik asit, melamin Eu+3 ve Dy+3 ‘un 1200 °C’de 1 saat ısıl işlemi ile sentezlendi. Bor nitrür UV ışık ile uyarıldığında Eu+3 ve Dy+3 iyonlarının varlıkları maviden kırmızıya emisyon göstermiştir. Farklı [Dy+3 / Eu+3] oranları kullanılarak enerji verimliliği en yüksek olan formülasyon belirlenmiştir. Yüksek enerji verimliliğine (~0,83) sahip emisyon [Dy+3 / Eu+3] = 0,5 oranında görülmüştür. Ayrıca Dy+3 iyonlarının miktarının artmasıyla ışıldama yoğunluğunun azaldığı görülmüştür. Işıldama göstermeyen disprozyum borat (DyBO3) fazının oluşumu lüminesans özelliği olumsuz etkilemiştir.

Kaynakça

  • Khan, S. A., Khan, N. Z., Hao, Z., Ji, W. W., Abadikhah, H., Hao, L., Xu, X. & Agathopoulos, S. (2018). Influence of substitution of Al-O for Si-N on improvement of photoluminescence properties and thermal stability of Ba2Si5N8: Eu2+ red emitting phosphors. Journal of Alloys and Compounds, 730, 249-254. https://doi.org/10.1016/j.jallcom.2017.09.335.
  • Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., & Mitomo, M. (2010). Photoluminescence properties of rare earth doped α-Si3N4. Journal of Luminescence, 130(7), 1147- 1153. https://doi.org/10.1016/j.jlumin.2010.02.012.
  • Steckl, A. J., & Birkhahn, R. (1998). Visible emission from Er-doped GaN grown by solid source molecular beam epitaxy. Applied Physics Letters, 73(12), 1700-1702. https://doi.org/10.1063/1.122250.
  • Moon, S., Kim, J., Park, J., Im, S., Kim, J., Hwang, I., & Kim, J. K. (2023). Hexagonal boron nitride for nextgeneration photonics and electronics. Advanced Materials, 35(4), 2204161. https://doi.org/10.1002/ adma.202204161.
  • Jiang, T., Jin, Z., Yang, J., & Qiao, G. (2009). Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process. Journal of Materials Processing Technology, 209(1), 561-571. https://doi.org/10.1016/j.jmatprotec.2008.02.026.
  • Vel, L., Demazeau, G., & Etourneau, J. (1991). Cubic boron nitride: synthesis, physicochemical properties and applications. Materials Science and Engineering: B, 10(2), 149-164. https://doi.org/10.1016/0921-5107(91)90121-B.
  • Singla, P., Goel, N., & Singhal, S. (2015). Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceramics International, 41(9), 10565-10577. https://doi.org/10.1016/j.ceramint.2015.04.15.
  • Ferreira, F., Chaves, A. J., Peres, N. M. R., & Ribeiro, R. M. (2019). Excitons in hexagonal boron nitride singlelayer: a new platform for polaritonics in the ultraviolet. Journal of the Optical Society of America B, 36(3), 674- 683. https://doi.org/10.1364/JOSAB.36.000674.
  • Liang, L., Chen, C., Lv, Z., Xie, M., Yu, Y., Liang, C., Lou, Y., Li, C., & Shi, Z. (2019). Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anticounterfeit fluorescent ink. Journal of Luminescence, 206, 560-564. https://doi.org/10.1016/j.jlumin.2018.10.088.
  • Antoniak, M. A., Grzyb, J., & Nyk, M. (2019). Preserved two-photon optical properties of hydrophilic proteinsconjugated quantum dots. Journal of Luminescence, 209, 57-60. https://doi.org/10.1016/j.jlumin.2019.01.029.
  • Yu, B., Liu, D., Wang, Y., Zhang, T., Zhang, Y. M., Li, M., & Zhang, S. X. A. (2019). A solid-state emissive and solvatofluorochromic fluorophore and its application in high-contrast, fast, and repeatable thermochromic blends. Dyes and Pigments, 163, 412-419. https://doi.org/10.1016/j.dyepig.2018.12.008.
  • Zabiliūtė-Karaliūnė, A., Aglinskaitė, J., & Vitta, P. (2021). The reduction of the thermal quenching effect in laserexcited phosphor converters using highly thermally conductive hBN particles. Scientific Reports, 11(1), 6755. https://doi.org/10.1038/s41598-021-86249-4.
  • Jung, J. Y., Shim, Y. S., Son, C. S., Kim, Y. K., & Hwang, D. (2021). Boron nitride nanoparticle phosphors for use in transparent films for deep-UV detection and White light-emitting diodes. ACS Applied Nano Materials, 4(4), 3529-3536. https://doi.org/10.1021/acsanm.1c00013.
  • Jung, J. Y., Song, B. K., & Kim, Y. K. (2019). Tunable color emission of transparent boron nitride nanophosphors towards anti-counterfeiting application. Journal of Alloys and Compounds, 791, 81-86. https://doi.org/10.1016/j. jallcom.2019.03.269.
  • Jung, J. Y., Baek, Y. K., Lee, J. G., Kim, Y. D., Cho, S. H., & Kim, Y. K. (2018). The structure and luminescence of boron nitride doped with Ce ions. Applied Physics A, 124, 1-6. https://doi.org/10.1007/s00339-018-2054-y.
  • Wu, J., Yin, L., & Zhang, L. (2013). Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce 3+ ions doping. RSC Advances, 3(20), 7408-7418. https://doi.org/10.1039/C3RA23132A.
  • Chen, H., Chen, Y., Li, C. P., Zhang, H., Williams, J. S., Liu, Y., Liu, Z. & Ringer, S. P. (2007). Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source. Advanced Materials, 19(14), 1845-1848. https:// doi.org/10.1002/adma.200700493.
  • Li, Y., Shen, Y., Gong, C., Li, B., Huang, H., & Ji, K. (2018). Synthesis and characterization of boron nitride powder. AIP Conference Proceedings, 1971(1), 020007. https://doi.org/10.1063/1.5041102.
  • Hu, C., Xiao, Y., Zhao, Y., Chen, N., Zhang, Z., Cao, M., & Qu, L. (2013). Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 5(7), 2726-2733. https://doi.org/10.1039/C3NR34002C.
  • Zhao, Y. C., Yu, D. L., Zhou, H. W., Tian, Y. J., & Yanagisawa, O. (2005). Turbostratic carbon nitride prepared by pyrolysis of melamine. Journal of Materials Science, 40(9-10), 2645-2647. https://doi.org/10.1007/ s10853-005-2096-3.
  • Torabi, O., Golabgir, M. H., Tajizadegan, H., & Jamshidi, A. (2016). Mechanochemical behavior of magnesiumboron oxide-melamine ternary system in the synthesis of h-BN nanopowder. Ceramics International, 42(5), 6450- 6456. https://doi.org/10.1016/j.ceramint.2016.01.084
  • Rounaghi, S. A., Rashid, A. K., Eshghi, H., & Khaki, J. V. (2012). Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. Journal of Solid State Chemistry, 190, 8-11. https://doi.org/10.1016/j. jssc.2012.01.005.
  • Zhang, W., Liu, T., & Xu, J. (2016). Preparation and characterization of 10 B boric acid with high purity for nuclear industry. SpringerPlus, 5, 1-10. https://doi. org/10.1186/s40064-016-2310-6.
  • Elbeyli, İ. Y. (2015). Production of crystalline boric acid and sodium citrate from borax decahydrate. Hydrometallurgy, 158, 19-26. https://doi.org/10.1016/j. hydromet.2015.09.022.
  • Islam, M., Chakraborty, A. K., Gafur, M. A., & Rahman, M. (2019). Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Research on Chemical Intermediates, 45(4), 1753- 1773. https://doi.org/10.1007/s11164-018-3703-7.
  • Töre, İ. (2015). Hexagonal boron nitride powder synthesis and sintering behaviours (Council of Higher Education Thesis Number: 198422) [Doctoral Dissertation, Anadolu University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=9FQtSikHPUTz3EQg-LiMOA&no=4PKj1qY5YTP6mTUGfuwp8A.
  • Kırbaş, İ. (2021). Improving the structural and physical properties of boric acid-doped rigid polyurethane materials. Composites and Advanced Materials, 30, 26349833211010819. https://doi. org/10.1177/26349833211010819.
  • Liu, Y., Chen, Z., Zhang, J., Ai, S., & Tang, H. (2019). Ultralight and thermal insulation carbon foam/SiO2 aerogel composites. Journal of Porous Materials, 26(5), 1305-1312. https://doi.org/10.1007/ s10934-019-00732-y.
  • Suryanto, B. H., Fang, T., Cheong, S., Tilley, R. D., & Zhao, C. (2018). From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. Journal of Materials Chemistry A, 6(11), 4686-4694. https://doi.org/10.1039/C7TA11257B.
  • Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123. https://doi.org/10.1016/j.apsusc.2016.07.030.
  • Hernández, M. F., Suárez, G., Cipollone, M., Conconi, M. S., Aglietti, E. F., & Rendtorff, N. M. (2017). Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceramics International, 43(2), 2188-2195. https://doi.org/10.1016/j.ceramint.2016.11.002.
  • Hernández, M. F., Violini, M. A., Serra, M. F., Conconi, M. S., Suarez, G., & Rendtorff, N. M. (2020). Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O 3 effect in clay thermal behavior and resultant ceramics properties. Journal of Thermal Analysis and Calorimetry, 139, 1717-1729. https://doi.org/10.1007/ s10973-019-08563-4.
  • Huber, C., Setoodeh Jahromy, S., Jordan, C., Schreiner, M., Harasek, M., Werner, A., & Winter, F. (2019). Boric acid: a high potential candidate for thermochemical energy storage. Energies, 12(6), 1086. https://doi.org/10.3390/en12061086.
  • Kıvanç, M., Barutca, B., Koparal, A. T., Göncü, Y., Bostancı, S. H., & Ay, N. (2018). Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C, 91, 115-124. https://doi.org/10.1016/j.msec.2018.05.028.
  • Singh, B., Kaur, G., Singh, P., Singh, K., Kumar, B., Vij, A., ... & Kumar, A. (2016). Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Scientific Reports, 6(1), 1-10. https://doi.org/10.1038/srep35535.
  • Ansaloni, L. M. S., & de Sousa, E. M. B. (2013). Boron nitride nanostructured: Synthesis, characterization and potential use in cosmetics, Materials Sciences and Applications, 4(1), 22-28. https://doi.org/10.4236/ msa.2013.41004.
  • Ryu, S., Oh, H., & Kim, J. (2019). Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite. Polymers, 11(10), 1628. https://doi.org/10.3390/polym11101628.
  • Weng, Q., Wang, X., Wang, X., Bando, Y., & Golberg, D. (2016). Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 45(14), 3989-4012. https://doi.org/10.1039/C5CS00869G.
  • Wang, J., Ma, F., & Sun, M. (2017). Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 7(27), 16801-16822. https://doi.org/10.1039/C7RA00260B.
  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances, 32(5), 751-767. doi.org/10.1107/S0567739476001551.
  • Sharma, P. K., Dutta, R. K., & Pandey, A. C. (2012). Size-dependent emission efficiency and luminescence characteristics of YBO3: Tb3+ nanocrystals under vacuum ultraviolet excitations.Journal of Applied Physics, 112(5), 054321. https://doi.org/10.1063/1.4751335.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Janserin Özkurt 0009-0007-1494-6461

Nuran Ay 0000-0002-2228-9904

Yayımlanma Tarihi 30 Eylül 2023
Kabul Tarihi 30 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Özkurt, J., & Ay, N. (2023). Lüminesans özellik gösteren hekzagonal bor nitrür üretiminin araştırılması. Journal of Boron12-18. https://doi.org/10.30728/boron.1266900