Araştırma Makalesi
BibTex RIS Kaynak Göster

Borik asitin sementoblast hücrelerinde nikotin kaynaklı biyoaktivite kaybı üzerindeki etkisi

Yıl 2023, , 123 - 134, 29.12.2023
https://doi.org/10.30728/boron.1316579

Öz

Borik asit (BA) dental fizyolojide mineral kompozisyonu ile ilişkili alveolar kemik yoğunluğunu etkiler ve nikotin (N) maruziyeti periodontal hastalığın patofizyolojisinde önemli bir risk faktörüdür. Bu çalışmanın amacı, BA'in sementoblast hücrelerinde N maruziyeti sonrası biyoaktivite kaybı üzerindeki etkisini araştırmaktır. Bu amaçla, sementoblast hücreleri farklı konsantrasyonlarda (10-1, 10-2, 10-3, 10-4, 10-5, 10-6 mM) N ve 10 ng/mL konsantrasyonda BA ile muamele edilmiş ve hücre canlılığı 24 ve 72. saatlerde MTT testi ile değerlendirildi. Hücrelerin yara alanına göç potansiyeli, göç:yara iyileşmesi deneyi ile görüntülendi. Total RNA 3, 6 ve 9. günlerde hücrelerden izole edildi ve mineralize doku ile ilişkili belirteçlerin gen ekspresyonu gerçek zamanlı polimeraz zincir reaksiyonu kullanılarak analiz edildi. Elde edilen sonuçlar, N'in sementoblast hücrelerinin canlılığı, migrasyona dayalı yara iyileşmesi ve özellikle mineralize doku ile ilgili genlerin ekspresyonu üzerinde önemli bir etkiye sahip olduğunu gösterdi. Ayrıca N maruziyetinin gün bazında artmasıyla birlikte hedef gen ifade paternlerinin olumsuz etkilendiği ve BA uygulamasının ise sementoblast hücre fonksiyonlarının korunmasında güçlü bir prevantif terapötik ajan olabileceği belirlendi.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012104849

Teşekkür

Bu makale TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destek Programı kapsamında 1919B012104849 numaralı proje ile desteklenmiştir. Vermiş oldukları destekle bu projeyi gerçekleştirmemizi sağlayan TÜBİTAK'a teşekkür ederiz.

Kaynakça

  • [1] Bolt, H.M., Duydu, Y., Başaran, N., & Golka, K. (2017). Boron and its compounds: cur-rent biological research activities. Archives of Toxicology, 91(8),2719-2722. DOI:10.1007/s00204-017-2010-1
  • [2] Uluisik, I., Karakaya, H.C., & Koc, A. (2018) The importance of boron in biological sys-tems. Journal of Trace Elements in Medicine and Biology, 45,156-162. DOI:10.1016/j.jtemb.2017.10.008
  • [3] Hakki, S.S., Dundar, N., Kayis, S.A., Hakki, E.E., Hamurcu, M., Kerimoglu, U., Baspinar, N., Basoglu, A., & Nielsen, F.H. (2013) Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2),148-153. DOI:10.1016/j.jtemb.2012.07.001
  • [4] Sağlam, M., Arslan, U., Bozkurt, Ş.B., & Hakki, S.S. (2013). Boric acid irrigation as an adjunct to mechanical periodontal therapy in patients with chronic periodontitis: a randomized clinical trial. Journal of Periodontology, 84(9),1297-1308. DOI:10.1902/jop.2012.120467
  • [5] Hakki, S.S., Bozkurt, B.S., & Hakki, E.E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4),243-250. DOI:10.1016/j.jtemb.2010.03.003
  • [6] Hakki, S.S., Malkoc, S., Dundar, N., Kayis, S.A., Hakki, E.E., Hamurcu, M., Baspinar, N., Basoglu, A., Nielsen, F.H., & Götz, W. (2015) Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alve-olar bone mineral density in rabbits fed a high-energy diet. Journal of Trace Elements in Medicine and Biology, 29,208-215. DOI:10.1016/j.jtemb.2014.10.007
  • [7] Nielsen, F.H. (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environmental Health Perspectives, 102, 59-63. DOI: 10.1289/ehp.94102s759
  • [8] Nielsen, F.H. (2004) The alteration of magnesium, calcium and phosphorus metabo-lism by dietary magnesiumdeprivation in postmenopausal women is not affected by dietary boron deprivation. Magnesium Research, 17,197–210. https://pubag.nal.usda.gov/download/20721/PDF
  • [9] Nielsen, F.H., Stoecker, B.J., & Penland, J.G. (2007) Boron as a dietary factor for bone microarchitecture and central nervous system function. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L, Eds. Advances in Plant and Animal Boron Nutrition. Dordrecht, The Netherlands: Springer, 277–290. https://link.springer.com/chapter/10.1007/978-1-4020-5382-5_27
  • [10] Malhotra, R., Kapoor, A., Grover, V., & Kaushal, S. (2010) Nicotine and periodontal tissues. Journal of Indian Society of Periodontology, 14,72-79. DOI: 10.4103/0972-124X.65442
  • [11] Meenawat, A., Govila, V., Goel, S., Verma, S., Punn, K., Srivastava, V., & Dolas, R.S. (2015). Evaluation of the effect of nicotine and metabolites on the periodontal status and the mRNA expression of interleukin-1 in smokers with chronic periodontitis. Journal of Indian Society of Periodontology, 19,381-387. DOI: 10.4103/0972-124X.157879
  • [12] Lahdentausta, L., Paju, S., Mäntylä, P., Buhlin, K., Pietiäinen, M., Tervahartiala, T., Nieminen, M.S., Sinisalo, J., Sorsa, T., & Pussinen, P.J. (2019) Smoking confounds the periodontal diagnostics using saliva biomarkers. Journal of Periodontology, 90,475-483. DOI: 10.1002/JPER.18-0545
  • [13] Nogueira-Filho Gda, R., Rosa, B.T., Cesar-Neto, J.B., Tunes, R.S., & Tunes Uda, R. (2007) Low- and high-yield cigarette smoke inhalation potentiates bone loss during ligature-induced periodontitis. Journal of Periodontology, 78,730-735. DOI: 10.1902/jop.2007.060323
  • [14] Talhout, R., Schulz, T., Florek, E., van Benthem, J., Wester, P., & Opperhuizen, A. (2011) Hazardous compounds in tobacco smoke. International Journal of Environmental Research and Public Health, 8,613-628. DOI: 10.3390/ijerph8020613
  • [15] Wu, L.Z., Duan, D.M., Liu, Y.F., Ge, X., Zhou, Z.F., & Wang, X.J. (2013) Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4(+) T cells by upregulating IL-1. International Journal of Molecular Medicine, 31,938-942. DOI: 10.3892/ijmm.2013.1259
  • [16] Barbour, S.E., Nakashima, K., Zhang, J.B., Tangada, S., Hahn, C.L., Schenkein, H.A., & Tew, J.G. (1997) Tobacco and smoking: Environmental factors that modify the host response (immune system) and have an impact on periodontal health. Critical Reviews in Oral Biology & Medicine, 8,437-460. DOI: 10.1177/10454411970080040501
  • [17] Theiss, S.M., Boden, S.D., Hair, G., Titus, L., Morone, M.A., & Ugbo, J. (2000) The effect of nicotine on gene expression during spine fusion. Spine, 25(20),2588-2594. DOI: 10.1097/00007632-200010150-00008
  • [18] Pinto, J.R., Bosco, A.F., Okamoto, T., Guerra, J.B., & Piza, I.G. (2002) Effects of nicotine on the healing of extraction sockets in rats. A histological study. Brazilian Dental Journal, 13,3-9. https://pubmed.ncbi.nlm.nih.gov/11870959/
  • [19] Zhou, J., Olson, B.L., & Windsor, L.J. (2007) Nicotine increases the collagendegrading ability of human gingival fibroblasts. Journal of Periodontal Research,42,228-235. DOI: 10.1111/j.1600-0765.2006.00937.x
  • [20] Zheng, L.W., MA, L., & Cheung, L.K. (2008) Changes in blood perfusion and bone healing induced by nicotine during distraction osteogenesis. Bone, 43,355-361. DOI: 10.1016/j.bone.2008.04.002
  • [21] Riebel, G.D., Boden, S.D., Whitesides, T.E., & Hutton, W.C. (1995) The effect of nicotine on in-corporation of cancellous bone graft in an animal model. Spine, 20,2198-2202. DOI: 10.1097/00007632-199510001-00004
  • [22] Fang, Y., & Svoboda, K.K. (2005) Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology, 32, 1200-1207. DOI: 10.1111/j.1600-051X.2005.00845.x
  • [23] Takeuchi-Igarashi, H., Kubota, S., Tachibana, T., Murakashi, E., Takigawa, M., Okabe, M., & Numabe, Y. (2016) Matrix remodeling response of human periodontal tissue cells toward fibrosis upon nicotine exposure. Odontology, 104,35-43. DOI: 10.1007/s10266-014-0177-y
  • [24] Sculean, A., Gruber, R., & Bosshardt, D.D. (2014) Soft tissue wound healing around teeth and dental implants. Journal of Clinical Periodontology, 41,6-22. DOI: 10.1111/jcpe.12206
  • [25] Bosshardt, D.D., Stadlinger, B., & Terheyden, H. (2015) Cell-to-cell communication–periodontal regeneration. Clinical Oral Implants Research, 26, 229-239. DOI: 10.1111/clr.12543
  • [26] Moon, J.S., Kim, S.D., Ko, H.M., Kim, Y.J., Kim, S.H., & Kim, M.S. (2018) Twist1 suppresses cementoblast differentiation. Dentistry Journal, 6,E57. DOI: 10.3390/dj6040057
  • [27] Bozkurt, S.B., Hakki, E.E., Kayis, S.A., Dundar, N., & Hakki, S.S. (2017) Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers in Medical Science, 32,911-919. DOI: 10.1007/s10103-017-2192-z
  • [28] Chen, C.S., Lee, S.S., Yu, H.C., Huang, F.M., & Chang, Y.C. (2015) Effects of nicotine on cell growth, migration, and production of inflammatory cytokines and reactive oxygen species by cementoblasts. Journal of Dental Sciences, 10,154-160. DOI: 10.1016/j.jds.2014.04.002
  • [29] Hakki, S.S., Bozkurt, S.B., Türkay, E., Dard, M., Purali, N.,& Götz, W. (2018) Recombinant amelogenin regulates the bioactivity of mouse cementoblasts in vitro. International Journal of Oral Science, 10,15. DOI: 10.1038/s41368-018-0010-5
  • [30] Bozkurt, S.B., & Hakki, S.S. (2020) Nicotine suppresses proliferation and mineralized tissue-associated gene expressions of cementoblasts. Journal of Periodontology, 91,800–808. DOI: 10.1002/JPER.19-0256
  • [31] D’Errico, J.A., Ouyang, H., Berry, J.E., MacNeil, R.L., Strayhorn, C., Imperiale, M.J., Harris, N.L., Goldberg, H., Somerman, M.J. (1999) Immortalized cementoblasts and periodontal ligament cells in culture. Bone, 25,39–47. DOI: 10.1016/s8756-3282(99)00096-4
  • [32] Torshabi, M., Rezaei Esfahrood, Z., Jamshidi, M., Mansuri Torshizi, A., & Sotoudeh, S. (2017) Efficacy of vitamins E and C for reversing the cytotoxic effects of nicotine and cotinine. European Journal of Oral Sciences, 125,426-437. DOI: 10.1111/eos.12375
  • [33] Kim, B.S., Kim, S.J., Kim, H.J., Lee, S., Park, Y.J., Lee, J., & You, H.K. (2012) Effects of nicotine on proliferation and osteoblast differentiation in human alveolar bone marrow derived mesenchymal stem cells. Life Science Journal, 90,109-115. DOI: 10.1016/j.lfs.2011.10.019
  • [34] Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., & Mathieu, C. (2001) An overwiew of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 25, 386-401. DOI: 10.1006/meth.2001.1261
  • [35] Livak, K. J., & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Ct method. Methods 25,402-408. DOI: 10.1006/meth.2001.1262
  • [36] Pfaffl, M. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 900. DOI: 10.1093/nar/29.9.e45
  • [37] Milanezi de Almeida, J., Bosco, A.F., Bonfante, S., Theodoro, L.H., Nagata, M.J., & Garcia, V.G. (2011) Nicotine-induced damage affects gingival fibroblasts in the gingival tissue of rats. Journal of Periodontology, 82,1206-1211. DOI: 10.1902/jop.2010.100549
  • [38] Chang, Y.C., Lii, C.K., Tai, K.W., & Chou, M.Y. (2001) Adverse effects of arecoline and nicotine on human periodontal ligament fibroblasts in vitro. Journal of Periodontology, 28,277-282. DOI: 10.1034/j.1600-051x.2001.028003277.x
  • [39] Bergström, J. (2004) Tobacco smoking and chronic destructive periodontal disease. Odontology, 92, 1-8. DOI: 10.1007/s10266-004-0043-4
  • [40] Nakayama, Y., Mezawa, M., Araki, S., Sasaki, Y., Wang, S., Han, J., Li, X., Takai, H., Ogata, Y. (2009) Nicotine suppresses bone sialoprotein gene expression. Journal of Periodontal Research, 44, 657-663. DOI: 10.1111/j.1600-0765.2008.01171.x
  • [41] Rothem, D.E., Rothem, L., Soudry, M., Dahan, A., & Eliakim, R. (2009) Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. Journal of Bone and Mineral Metabolism, 27(5), 555-561. DOI: 10.1007/s00774-009-0075-5
  • [42] Giannopoulou, C., Geinoz, A., & Cimasoni, G. (1999) Effects of nicotine on periodontal ligament fibroblasts in vitro. Journal of Clinical Periodontology, 26(1), 49-55. DOI: 10.1034/j.1600-051x.1999.260109.x
  • [43] Chang, Y.C., Huang, F.M., Tai, K.W., Yang, L.C., & Chou, M.Y. (2002) Mechanisms of cytotoxicity of nicotine in human periodontal ligament fibroblast cultures in vitro. Journal of Periodontal Research, 37(4), 279-285. DOI: 10.1034/j.1600-0765.2002.01612.x
  • [44] Kaymaz, B., Gölge, U.H., Ozyalvaclı, G., Kömürcü, E., Goksel, F., Mermerkaya, M.U., & Doral, M.N. (2016) Effects of boric acid on the healing of Achilles tendons of rats. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3738-3744. DOI: 10.1007/s00167-015-3617-5
  • [45] Bosshardt, DD. (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype. Journal of Dental Research, 84, 390-406. DOI: 10.1177/154405910508400501
  • [46] Hakki, S.S., Foster, B.L., Nagatomo, K.J., Bozkurt, S.B., Hakki, E.E., Somerman, M.J., & Nohutcu, R.M. (2010) Bone morphogenetic protein-7 enhances cementoblast function in vitro. Journal of Periodontology, 81(11), 1663-1674. DOI: 10.1902/jop.2010.100074
  • [47] Hakki, S.S., Bozkurt, S.B., Hakki, E.E., Nielsen, F.H. (2021) Boron as Boric Acid Induces mRNA Expression of the Differentiation Factor Tuftelin in Pre-Osteoblastic MC3T3-E1 Cells. Biological Trace Element Research,199(4),1534-1543. DOI: 10.1007/s12011-020-02257-x

The Effect of boric acid on nicotine-related deprive of bioactivity in cementoblast cells

Yıl 2023, , 123 - 134, 29.12.2023
https://doi.org/10.30728/boron.1316579

Öz

Boric acid (BA) affects alveolar bone density related to mineral composition in dental physiology and nicotine (N) exposure is an important risk factor in the pathophysiology of periodontal disease. The aim of this study was to investigate the effect of BA on the deprive of bioactivity in cementoblast cells after N exposure. For this purpose, cementoblast cells were treated with different concentrations (10-1, 10-2, 10-3, 10-4, 10-5, 10-6 mM) of N and BA at a concentration of 10 ng/mL and cell viability was evaluated at 24 and 72 h by MTT assay. The migration potential of cells into the wound area was visualized by migration:wound healing assay. Total RNA was isolated from cells on days 3, 6 and 9 and gene expression of mineralized tissue-associated markers was analyzed using real-time polymerase chain reaction. The results showed that N had a significant effect on the viability of cementoblast cells, migration-based wound healing, especially on the expression of mineralized tissue-related genes. In addition, it was determined that target gene expression patterns were negatively affected with the increase in N exposure on a daily basis, and BA application may be a powerful preventive therapeutic agent in the protection of cementoblast cell functions.

Proje Numarası

1919B012104849

Kaynakça

  • [1] Bolt, H.M., Duydu, Y., Başaran, N., & Golka, K. (2017). Boron and its compounds: cur-rent biological research activities. Archives of Toxicology, 91(8),2719-2722. DOI:10.1007/s00204-017-2010-1
  • [2] Uluisik, I., Karakaya, H.C., & Koc, A. (2018) The importance of boron in biological sys-tems. Journal of Trace Elements in Medicine and Biology, 45,156-162. DOI:10.1016/j.jtemb.2017.10.008
  • [3] Hakki, S.S., Dundar, N., Kayis, S.A., Hakki, E.E., Hamurcu, M., Kerimoglu, U., Baspinar, N., Basoglu, A., & Nielsen, F.H. (2013) Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2),148-153. DOI:10.1016/j.jtemb.2012.07.001
  • [4] Sağlam, M., Arslan, U., Bozkurt, Ş.B., & Hakki, S.S. (2013). Boric acid irrigation as an adjunct to mechanical periodontal therapy in patients with chronic periodontitis: a randomized clinical trial. Journal of Periodontology, 84(9),1297-1308. DOI:10.1902/jop.2012.120467
  • [5] Hakki, S.S., Bozkurt, B.S., & Hakki, E.E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4),243-250. DOI:10.1016/j.jtemb.2010.03.003
  • [6] Hakki, S.S., Malkoc, S., Dundar, N., Kayis, S.A., Hakki, E.E., Hamurcu, M., Baspinar, N., Basoglu, A., Nielsen, F.H., & Götz, W. (2015) Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alve-olar bone mineral density in rabbits fed a high-energy diet. Journal of Trace Elements in Medicine and Biology, 29,208-215. DOI:10.1016/j.jtemb.2014.10.007
  • [7] Nielsen, F.H. (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environmental Health Perspectives, 102, 59-63. DOI: 10.1289/ehp.94102s759
  • [8] Nielsen, F.H. (2004) The alteration of magnesium, calcium and phosphorus metabo-lism by dietary magnesiumdeprivation in postmenopausal women is not affected by dietary boron deprivation. Magnesium Research, 17,197–210. https://pubag.nal.usda.gov/download/20721/PDF
  • [9] Nielsen, F.H., Stoecker, B.J., & Penland, J.G. (2007) Boron as a dietary factor for bone microarchitecture and central nervous system function. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L, Eds. Advances in Plant and Animal Boron Nutrition. Dordrecht, The Netherlands: Springer, 277–290. https://link.springer.com/chapter/10.1007/978-1-4020-5382-5_27
  • [10] Malhotra, R., Kapoor, A., Grover, V., & Kaushal, S. (2010) Nicotine and periodontal tissues. Journal of Indian Society of Periodontology, 14,72-79. DOI: 10.4103/0972-124X.65442
  • [11] Meenawat, A., Govila, V., Goel, S., Verma, S., Punn, K., Srivastava, V., & Dolas, R.S. (2015). Evaluation of the effect of nicotine and metabolites on the periodontal status and the mRNA expression of interleukin-1 in smokers with chronic periodontitis. Journal of Indian Society of Periodontology, 19,381-387. DOI: 10.4103/0972-124X.157879
  • [12] Lahdentausta, L., Paju, S., Mäntylä, P., Buhlin, K., Pietiäinen, M., Tervahartiala, T., Nieminen, M.S., Sinisalo, J., Sorsa, T., & Pussinen, P.J. (2019) Smoking confounds the periodontal diagnostics using saliva biomarkers. Journal of Periodontology, 90,475-483. DOI: 10.1002/JPER.18-0545
  • [13] Nogueira-Filho Gda, R., Rosa, B.T., Cesar-Neto, J.B., Tunes, R.S., & Tunes Uda, R. (2007) Low- and high-yield cigarette smoke inhalation potentiates bone loss during ligature-induced periodontitis. Journal of Periodontology, 78,730-735. DOI: 10.1902/jop.2007.060323
  • [14] Talhout, R., Schulz, T., Florek, E., van Benthem, J., Wester, P., & Opperhuizen, A. (2011) Hazardous compounds in tobacco smoke. International Journal of Environmental Research and Public Health, 8,613-628. DOI: 10.3390/ijerph8020613
  • [15] Wu, L.Z., Duan, D.M., Liu, Y.F., Ge, X., Zhou, Z.F., & Wang, X.J. (2013) Nicotine favors osteoclastogenesis in human periodontal ligament cells co-cultured with CD4(+) T cells by upregulating IL-1. International Journal of Molecular Medicine, 31,938-942. DOI: 10.3892/ijmm.2013.1259
  • [16] Barbour, S.E., Nakashima, K., Zhang, J.B., Tangada, S., Hahn, C.L., Schenkein, H.A., & Tew, J.G. (1997) Tobacco and smoking: Environmental factors that modify the host response (immune system) and have an impact on periodontal health. Critical Reviews in Oral Biology & Medicine, 8,437-460. DOI: 10.1177/10454411970080040501
  • [17] Theiss, S.M., Boden, S.D., Hair, G., Titus, L., Morone, M.A., & Ugbo, J. (2000) The effect of nicotine on gene expression during spine fusion. Spine, 25(20),2588-2594. DOI: 10.1097/00007632-200010150-00008
  • [18] Pinto, J.R., Bosco, A.F., Okamoto, T., Guerra, J.B., & Piza, I.G. (2002) Effects of nicotine on the healing of extraction sockets in rats. A histological study. Brazilian Dental Journal, 13,3-9. https://pubmed.ncbi.nlm.nih.gov/11870959/
  • [19] Zhou, J., Olson, B.L., & Windsor, L.J. (2007) Nicotine increases the collagendegrading ability of human gingival fibroblasts. Journal of Periodontal Research,42,228-235. DOI: 10.1111/j.1600-0765.2006.00937.x
  • [20] Zheng, L.W., MA, L., & Cheung, L.K. (2008) Changes in blood perfusion and bone healing induced by nicotine during distraction osteogenesis. Bone, 43,355-361. DOI: 10.1016/j.bone.2008.04.002
  • [21] Riebel, G.D., Boden, S.D., Whitesides, T.E., & Hutton, W.C. (1995) The effect of nicotine on in-corporation of cancellous bone graft in an animal model. Spine, 20,2198-2202. DOI: 10.1097/00007632-199510001-00004
  • [22] Fang, Y., & Svoboda, K.K. (2005) Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathways. Journal of Clinical Periodontology, 32, 1200-1207. DOI: 10.1111/j.1600-051X.2005.00845.x
  • [23] Takeuchi-Igarashi, H., Kubota, S., Tachibana, T., Murakashi, E., Takigawa, M., Okabe, M., & Numabe, Y. (2016) Matrix remodeling response of human periodontal tissue cells toward fibrosis upon nicotine exposure. Odontology, 104,35-43. DOI: 10.1007/s10266-014-0177-y
  • [24] Sculean, A., Gruber, R., & Bosshardt, D.D. (2014) Soft tissue wound healing around teeth and dental implants. Journal of Clinical Periodontology, 41,6-22. DOI: 10.1111/jcpe.12206
  • [25] Bosshardt, D.D., Stadlinger, B., & Terheyden, H. (2015) Cell-to-cell communication–periodontal regeneration. Clinical Oral Implants Research, 26, 229-239. DOI: 10.1111/clr.12543
  • [26] Moon, J.S., Kim, S.D., Ko, H.M., Kim, Y.J., Kim, S.H., & Kim, M.S. (2018) Twist1 suppresses cementoblast differentiation. Dentistry Journal, 6,E57. DOI: 10.3390/dj6040057
  • [27] Bozkurt, S.B., Hakki, E.E., Kayis, S.A., Dundar, N., & Hakki, S.S. (2017) Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers in Medical Science, 32,911-919. DOI: 10.1007/s10103-017-2192-z
  • [28] Chen, C.S., Lee, S.S., Yu, H.C., Huang, F.M., & Chang, Y.C. (2015) Effects of nicotine on cell growth, migration, and production of inflammatory cytokines and reactive oxygen species by cementoblasts. Journal of Dental Sciences, 10,154-160. DOI: 10.1016/j.jds.2014.04.002
  • [29] Hakki, S.S., Bozkurt, S.B., Türkay, E., Dard, M., Purali, N.,& Götz, W. (2018) Recombinant amelogenin regulates the bioactivity of mouse cementoblasts in vitro. International Journal of Oral Science, 10,15. DOI: 10.1038/s41368-018-0010-5
  • [30] Bozkurt, S.B., & Hakki, S.S. (2020) Nicotine suppresses proliferation and mineralized tissue-associated gene expressions of cementoblasts. Journal of Periodontology, 91,800–808. DOI: 10.1002/JPER.19-0256
  • [31] D’Errico, J.A., Ouyang, H., Berry, J.E., MacNeil, R.L., Strayhorn, C., Imperiale, M.J., Harris, N.L., Goldberg, H., Somerman, M.J. (1999) Immortalized cementoblasts and periodontal ligament cells in culture. Bone, 25,39–47. DOI: 10.1016/s8756-3282(99)00096-4
  • [32] Torshabi, M., Rezaei Esfahrood, Z., Jamshidi, M., Mansuri Torshizi, A., & Sotoudeh, S. (2017) Efficacy of vitamins E and C for reversing the cytotoxic effects of nicotine and cotinine. European Journal of Oral Sciences, 125,426-437. DOI: 10.1111/eos.12375
  • [33] Kim, B.S., Kim, S.J., Kim, H.J., Lee, S., Park, Y.J., Lee, J., & You, H.K. (2012) Effects of nicotine on proliferation and osteoblast differentiation in human alveolar bone marrow derived mesenchymal stem cells. Life Science Journal, 90,109-115. DOI: 10.1016/j.lfs.2011.10.019
  • [34] Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., & Mathieu, C. (2001) An overwiew of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 25, 386-401. DOI: 10.1006/meth.2001.1261
  • [35] Livak, K. J., & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Ct method. Methods 25,402-408. DOI: 10.1006/meth.2001.1262
  • [36] Pfaffl, M. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 900. DOI: 10.1093/nar/29.9.e45
  • [37] Milanezi de Almeida, J., Bosco, A.F., Bonfante, S., Theodoro, L.H., Nagata, M.J., & Garcia, V.G. (2011) Nicotine-induced damage affects gingival fibroblasts in the gingival tissue of rats. Journal of Periodontology, 82,1206-1211. DOI: 10.1902/jop.2010.100549
  • [38] Chang, Y.C., Lii, C.K., Tai, K.W., & Chou, M.Y. (2001) Adverse effects of arecoline and nicotine on human periodontal ligament fibroblasts in vitro. Journal of Periodontology, 28,277-282. DOI: 10.1034/j.1600-051x.2001.028003277.x
  • [39] Bergström, J. (2004) Tobacco smoking and chronic destructive periodontal disease. Odontology, 92, 1-8. DOI: 10.1007/s10266-004-0043-4
  • [40] Nakayama, Y., Mezawa, M., Araki, S., Sasaki, Y., Wang, S., Han, J., Li, X., Takai, H., Ogata, Y. (2009) Nicotine suppresses bone sialoprotein gene expression. Journal of Periodontal Research, 44, 657-663. DOI: 10.1111/j.1600-0765.2008.01171.x
  • [41] Rothem, D.E., Rothem, L., Soudry, M., Dahan, A., & Eliakim, R. (2009) Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. Journal of Bone and Mineral Metabolism, 27(5), 555-561. DOI: 10.1007/s00774-009-0075-5
  • [42] Giannopoulou, C., Geinoz, A., & Cimasoni, G. (1999) Effects of nicotine on periodontal ligament fibroblasts in vitro. Journal of Clinical Periodontology, 26(1), 49-55. DOI: 10.1034/j.1600-051x.1999.260109.x
  • [43] Chang, Y.C., Huang, F.M., Tai, K.W., Yang, L.C., & Chou, M.Y. (2002) Mechanisms of cytotoxicity of nicotine in human periodontal ligament fibroblast cultures in vitro. Journal of Periodontal Research, 37(4), 279-285. DOI: 10.1034/j.1600-0765.2002.01612.x
  • [44] Kaymaz, B., Gölge, U.H., Ozyalvaclı, G., Kömürcü, E., Goksel, F., Mermerkaya, M.U., & Doral, M.N. (2016) Effects of boric acid on the healing of Achilles tendons of rats. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3738-3744. DOI: 10.1007/s00167-015-3617-5
  • [45] Bosshardt, DD. (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype. Journal of Dental Research, 84, 390-406. DOI: 10.1177/154405910508400501
  • [46] Hakki, S.S., Foster, B.L., Nagatomo, K.J., Bozkurt, S.B., Hakki, E.E., Somerman, M.J., & Nohutcu, R.M. (2010) Bone morphogenetic protein-7 enhances cementoblast function in vitro. Journal of Periodontology, 81(11), 1663-1674. DOI: 10.1902/jop.2010.100074
  • [47] Hakki, S.S., Bozkurt, S.B., Hakki, E.E., Nielsen, F.H. (2021) Boron as Boric Acid Induces mRNA Expression of the Differentiation Factor Tuftelin in Pre-Osteoblastic MC3T3-E1 Cells. Biological Trace Element Research,199(4),1534-1543. DOI: 10.1007/s12011-020-02257-x
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kristalografi
Bölüm Araştırma Makaleleri
Yazarlar

Melike Ünlütürk Bu kişi benim 0009-0000-6909-6619

Abdullah Emre Hasırcı Bu kişi benim 0009-0008-8908-308X

Serife Buket Bozkurt 0000-0002-8641-2844

Proje Numarası 1919B012104849
Yayımlanma Tarihi 29 Aralık 2023
Kabul Tarihi 1 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ünlütürk, M., Hasırcı, A. E., & Bozkurt, S. B. (2023). Borik asitin sementoblast hücrelerinde nikotin kaynaklı biyoaktivite kaybı üzerindeki etkisi. Journal of Boron, 8(4), 123-134. https://doi.org/10.30728/boron.1316579