Araştırma Makalesi
BibTex RIS Kaynak Göster

Amonyum floroborat katkılı PAN nanofiberlerin termal davranışının incelenmesi

Yıl 2023, , 158 - 188, 29.12.2023
https://doi.org/10.30728/boron.1359170

Öz

Bu çalışmada, Amonyum Floroboratın (AFB), Poliakrilonitril (PAN) polimerinin termal özelliklerine olan etkisi incelenmiştir. Bu amaç için, sürekli nanofiber üretim yöntemlerinden biri olan elektro-spin yöntemiyle, PAN ve AFB katkılanmış PAN (PAN-AFB) nanofiber formunda üretilmiştir. Üretilen nanofiberlerin ısıl bozunma davranışı termal gravimetrik analiz (TGA) ile incelenmiştir. Fiberlerin yapısal karakterizasyonu FT-IR ve SEM teknikleri kullanılarak gerçekleştirilmiştir. Elde edilen sonuçlara göre, PAN içerisine eklenen AFB miktarının artması ile nanofiberlerin ağırlık kaybının azaldığı ve termal kararlılığının arttığı gözlenmiştir. Polimer matrisine AFB katkı oranları %0,2, %0,4 ve %0,6 olarak uygulanmıştır. Bunun yanısıra, SEM analiz görüntüleri, AFB partiküllerinin Poliakrilonitril içerisinde homojen olarak dağıldığını göstermektedir. Deneysel çalışmaların sonuçlarına göre, AFB’nin PAN üzerindeki olumlu etkileri gözlenmiş ve termal direncini artırdığı sonucuna varılmıştır.

Kaynakça

  • 1] Park, M., Kuk, Y. S., Kwon, O. H., Acharya, J., Ojha,G. P., Ko, J. K., Kong, H. S. & Pant, B. (2022). Fly ashincorporated polystyrene nanofiber membrane as a fireretardant material: Valorization of discarded materials. Nanomaterials, 12(21), 3811. https://doi.org/10.3390/nano12213811.
  • [2]. Ko, F. K., & Wan, Y. (2014). Introduction to Nanofiber Materials. Cambridge University Press. ISBN: 978-0-521-87983-5.
  • [3]. Li, D., & Xia, Y. (2004). Electrospinning of nanofibers:Reinventing the wheel?. Advanced Materials, 16(14),1151-1170. https://doi.org/10.1002/adma.200400719.
  • [4]. Li, W.J., & Tuan, R.S. (2009). Fabrication and applicationof nanofibrous scaffolds in tissue engineering. Current Protocols in Cell Biology, 42(1), 25.2.1-25.2.12. https://doi.org/10.1002/0471143030.cb2502s42.
  • [5]. Horrocks, A.R., & Price, D. (Eds.). (2001). Fire Retardant Materials. Woodhead Publishing. ISBN: 9781855734197.
  • [6]. Yılmaz Aydın, D., Gürü, M., Ayar, B., & Çakanyıldırım, Ç. (2016). Applicability of boron compounds as flame retardant and high temperature resistant pigments. Journal of Boron, 1(1), 33-39. https://dergipark.org.tr/tr/pub/boron/issue/18612/196469.
  • [7]. Gürü, M., Güngör, G., Yılmaz Aydın, D., & Çakanyıldırım, Ç. (2022). The investigation of synthesis parameters, kinetic and flame retardant properties of magnesium fluoroborate. Chemical Papers, 76, 1313-1320. https:// doi.org/10.1007/s11696-021-01941-z.
  • [8]. Gürü, M., Güngör, G., Yılmaz Aydın, D., & Çakanyıldırım, Ç. (2021). Calcium fluoroborate synthesis, determination of kinetics and flame retardant properties. Journal of Boron, 6(3), 326-331. https://doi.org/10.30728/boron.880116.
  • [9]. Kusakli, S., Kocaman, S., Ceyhan, A. A., & Ahmetli, G. 2020). Improving the flame retardancy and mechanical properties of epoxy composites using flame retardants with red mud waste. Journal of Applied Polymer Science, 138(13), 50106. https://doi.org/10.1002/app.50106.
  • [10]. Clark, M. J. R., & Lynton, H. (1969). Crystal structures of potassium, ammonium, rubidium, and cesium tetrafluoroborates. Canadian Journal of Chemistry, 47(14), 2579-2586. https://doi.org/10.1139/v69-426.
  • [11]. Kartal, S. N., Brischke, C., Rapp, A. O., & Imamura, Y. (2006). Biological effectiveness of didecyldimethyl ammonium tetrafluoroborate (DBF) against basidiomycetes following preconditioning in soil bed tests. Wood Science and Technology, 40, 63-71. https://doi.org/10.1007/s00226-005-0048-3.
  • [12]. Ceyhan, A. A., Bağcı, S., Baytar, O., & Şahin, Ö. (2020). Ammonium fluoroborate production and determination of production parameters. Journal of Boron, 5(2), 63- 72. https://doi.org/10.30728/boron.687130.
  • [13]. Makaremi, M., De Silva, R. T., & Pasbakhsh, P. (2015). Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. The Journal of Physical Chemistry C, 119(14),7949-7958. https://doi.org/10.1021/acs.jpcc.5b00662.
  • [14]. Kahraman, H. T., Avcı, A., & Pehlivan, E. (2019). Novel sandwiched composite electro-spun mats based on polyacrylonitrile and polyvinyl butyral for fast oil-water separation. Iranian Polymer Journal, 28, 445-453.https://doi.org/10.1007/s13726-019-00713-7
  • [15] Van Krevelen, D. W., (1975). Some basic aspects of flame resistance of polymeric materials. Polymer,16(8), 615-620. https://doi.org/10.1016/0032-3861(75)90157-3.
  • [16]. Nasir, M., Matsumoto, H., Danno, T., Minagawa, M.,Irisawa, T., Shioya, M., & Tanioka, A. (2006). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779-786. https://doi.org/10.1002/polb.20737.
  • [17]. Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030. https://doi.org/10.1016/j.polymer.2004.01.024.

Investigation of thermal behavior of ammonium fluoroborate doped PAN nanofibers

Yıl 2023, , 158 - 188, 29.12.2023
https://doi.org/10.30728/boron.1359170

Öz

In this study, the effect of Ammonium Fluoroborate (AFB) on the thermal properties of Polyacrylonitrile (PAN) polymer was investigated. For this purpose, PAN and AFB doped PAN (PAN-AFB) nanofibers were produced by electro-spinning method. The thermal degradation behavior of produced nanofibers was examined by thermal gravimetric analysis (TGA). Structural characterizations of the fibers were performed using FT-IR and SEM techniques. According to the results, it was observed that the weight loss of the nanofibers decreased and the thermal stability increased with the increase in the amount of AFB added to the PAN. AFB additive ratios of 0,2%, 0,4% ve 0,6% were applied to the polymer matrix. Besides, SEM analysis images show that AFB particles are homogeneously dispersed in Polyacrylonitrile. According to the results of the experimental studies, the positive effects of AFB on PAN were observed and it was concluded that these effects increased its thermal resistance.

Kaynakça

  • 1] Park, M., Kuk, Y. S., Kwon, O. H., Acharya, J., Ojha,G. P., Ko, J. K., Kong, H. S. & Pant, B. (2022). Fly ashincorporated polystyrene nanofiber membrane as a fireretardant material: Valorization of discarded materials. Nanomaterials, 12(21), 3811. https://doi.org/10.3390/nano12213811.
  • [2]. Ko, F. K., & Wan, Y. (2014). Introduction to Nanofiber Materials. Cambridge University Press. ISBN: 978-0-521-87983-5.
  • [3]. Li, D., & Xia, Y. (2004). Electrospinning of nanofibers:Reinventing the wheel?. Advanced Materials, 16(14),1151-1170. https://doi.org/10.1002/adma.200400719.
  • [4]. Li, W.J., & Tuan, R.S. (2009). Fabrication and applicationof nanofibrous scaffolds in tissue engineering. Current Protocols in Cell Biology, 42(1), 25.2.1-25.2.12. https://doi.org/10.1002/0471143030.cb2502s42.
  • [5]. Horrocks, A.R., & Price, D. (Eds.). (2001). Fire Retardant Materials. Woodhead Publishing. ISBN: 9781855734197.
  • [6]. Yılmaz Aydın, D., Gürü, M., Ayar, B., & Çakanyıldırım, Ç. (2016). Applicability of boron compounds as flame retardant and high temperature resistant pigments. Journal of Boron, 1(1), 33-39. https://dergipark.org.tr/tr/pub/boron/issue/18612/196469.
  • [7]. Gürü, M., Güngör, G., Yılmaz Aydın, D., & Çakanyıldırım, Ç. (2022). The investigation of synthesis parameters, kinetic and flame retardant properties of magnesium fluoroborate. Chemical Papers, 76, 1313-1320. https:// doi.org/10.1007/s11696-021-01941-z.
  • [8]. Gürü, M., Güngör, G., Yılmaz Aydın, D., & Çakanyıldırım, Ç. (2021). Calcium fluoroborate synthesis, determination of kinetics and flame retardant properties. Journal of Boron, 6(3), 326-331. https://doi.org/10.30728/boron.880116.
  • [9]. Kusakli, S., Kocaman, S., Ceyhan, A. A., & Ahmetli, G. 2020). Improving the flame retardancy and mechanical properties of epoxy composites using flame retardants with red mud waste. Journal of Applied Polymer Science, 138(13), 50106. https://doi.org/10.1002/app.50106.
  • [10]. Clark, M. J. R., & Lynton, H. (1969). Crystal structures of potassium, ammonium, rubidium, and cesium tetrafluoroborates. Canadian Journal of Chemistry, 47(14), 2579-2586. https://doi.org/10.1139/v69-426.
  • [11]. Kartal, S. N., Brischke, C., Rapp, A. O., & Imamura, Y. (2006). Biological effectiveness of didecyldimethyl ammonium tetrafluoroborate (DBF) against basidiomycetes following preconditioning in soil bed tests. Wood Science and Technology, 40, 63-71. https://doi.org/10.1007/s00226-005-0048-3.
  • [12]. Ceyhan, A. A., Bağcı, S., Baytar, O., & Şahin, Ö. (2020). Ammonium fluoroborate production and determination of production parameters. Journal of Boron, 5(2), 63- 72. https://doi.org/10.30728/boron.687130.
  • [13]. Makaremi, M., De Silva, R. T., & Pasbakhsh, P. (2015). Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. The Journal of Physical Chemistry C, 119(14),7949-7958. https://doi.org/10.1021/acs.jpcc.5b00662.
  • [14]. Kahraman, H. T., Avcı, A., & Pehlivan, E. (2019). Novel sandwiched composite electro-spun mats based on polyacrylonitrile and polyvinyl butyral for fast oil-water separation. Iranian Polymer Journal, 28, 445-453.https://doi.org/10.1007/s13726-019-00713-7
  • [15] Van Krevelen, D. W., (1975). Some basic aspects of flame resistance of polymeric materials. Polymer,16(8), 615-620. https://doi.org/10.1016/0032-3861(75)90157-3.
  • [16]. Nasir, M., Matsumoto, H., Danno, T., Minagawa, M.,Irisawa, T., Shioya, M., & Tanioka, A. (2006). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779-786. https://doi.org/10.1002/polb.20737.
  • [17]. Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030. https://doi.org/10.1016/j.polymer.2004.01.024.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnorganik Kimya (Diğer)
Bölüm Research Makaleler
Yazarlar

Havva Kahraman 0000-0002-6368-6463

A. Abdullah Ceyhan 0000-0003-1592-5121

Yayımlanma Tarihi 29 Aralık 2023
Kabul Tarihi 11 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kahraman, H., & Ceyhan, A. A. (2023). Amonyum floroborat katkılı PAN nanofiberlerin termal davranışının incelenmesi. Journal of Boron, 8(4), 158-188. https://doi.org/10.30728/boron.1359170