Trietil borat, benzin ve trietil borat-benzin karışımının yanma özelliklerinin incelenmesi
Yıl 2024,
, 19 - 29, 29.03.2024
Duygu Sofuoğlu
,
Hüseyin Değirmenci
,
Ahmet Alper Yontar
Öz
Son yıllarda geleneksel yakıtların yerine alternatif yakıt arayışları, artan bir öneme sahiptir ve bu bağlamda bor türevli yakıtlar, yeni nesil enerji kaynakları için umut vadeden bir alternatif olarak değerlendirilmektedir. Buna istinaden bu çalışma, geleneksel bir yakıt olan benzinle yeni nesil bir yakıt olan trietil boratın (TEB) saf ve karışık formdaki damlacıklarının yanma özelliklerini incelemektedir. Çalışmada, yakıt damlacık çapının, alev yapısının ve alev sıcaklığının zaman içindeki evrimi, yüksek hızlı kamera ve termal kamera cihazlarıyla gözlemlenmiştir. Deneylerde referans olarak benzin yakıtı kullanılmış ve ayrıca, kütle bazında TEB eklenerek %20TEB, %40TEB, %60TEB ve %80TEB yakıt karışımları hazırlanmıştır. Yüksek hızlı kamera görüntülerinin analizi, TEB içeren yakıt damlacıklarının yanma işlemi sırasında benzin yakıtından farklı olarak geniş bir ışıksız (non-luminous) bölgeye sahip olduğunu göstermiştir. Saf ve karışık yakıtlardan elde edilen alevlerde, en yüksek alev sıcaklığı %80TEB karışımındaki damlacıklarda kaydedilmiştir. Ayrıca, en kısa yok olma süresi yine %80TEB karışımında gözlenmiştir. Deneyler sonucunda, en kısa tutuşma gecikmesinin %60TEB yakıt damlacıklarında, en uzun tutuşma gecikmesinin ise saf benzinde olduğu incelenmiştir. Genel olarak, TEB ilavesinin benzinle karşılaştırıldığında tutuşma gecikmesini azalttığı, toplam yok olma süresini artırdığı ve yanma sırasındaki sıcaklığı yükselttiği belirtilmiştir. Araştırmada incelenen yakıt damlacıklarının boyutsuz kare damlacık çapının (D/D0)² zamana bağlı değişiminin eğrileri, genellikle D²-yasasına uygun özellikler sergilemiştir.
Destekleyen Kurum
TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) ve Tarsus Üniversitesi
Proje Numarası
TUBİTAK 120M844 projesi ve Tarsus Üniversitesi BAP MF.20.001 – BAP MF.21.005 projeleri
Teşekkür
Yazarlar, bu araştırmaya TUBİTAK 120M844 projesi ve Tarsus Üniversitesi BAP MF.20.001 – BAP MF.21.005 projeleri aracılığıyla mali destek sağlayan TÜBİTAK'a (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) ve Tarsus Üniversitesi'ne şükranlarını sunarlar.
Kaynakça
- Kaynakça (References)
[1]. Shahir, S. A., Masjuki, H. H., Kalam, M. A., Imran, A., Fattah, I. R., & Sanjid, A. (2014). Feasibility of diesel-biodiesel-ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renewable and Sustainable Energy Reviews, 32, 379-395. https://doi.org/10.1016/j.rser.2014.01.029.
- [2]. Yusaf, T., Fernandes, L., Abu Talib, A. R., Altarazi, Y. S. M., Alrefae, W., Kadirgama, K., … & Laimon, M. (2022). Sustainable aviation-Hydrogen is the future. Sustainability, 14(1), 548. https://doi.org/10.3390/su14010548.
- [3]. Edwards, T., Colket, M., Cernansky, N., Dryer, F., Egolfopoulos, F., Friend, D., & Williams, S. (2007). Development of an experimental database and kinetic models for surrogate jet fuels. 45th AIAA aerospace sciences meeting and exhibit, 770. https://doi.org/10.2514/6.2007-770.
- [4]. Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J., & Silke, E. J. (2009). A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame, 156(1), 181-199. https://doi.org/10.1016/j.combustflame. 2008.07.014.
- [5]. Xu, Y., & Avedisian, C. T. (2015). Combustion of n-butanol, gasoline, and n-butanol/gasoline mixture droplets. Energy & Fuels, 29(5), 3467-3475. https://doi.org/10.1021/acs.energyfuels. 5b00158.
- [6]. Pan, K. L., & Chiu, M. C. (2013). Droplet combustion of blended fuels with alcohol and biodiesel/diesel in microgravity condition. Fuel, 113, 757-765. https://doi.org/10.1016/j.fuel.2013.03.029.
- [7]. Botero, M. L., Huang, Y., Zhu, D. L., Molina, A., & Law, C. K. (2012). Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures. Fuel, 94, 342-347. https://doi.org/10.1016/j.fuel.2011.10.049.
- [8]. Rao, D. C. K., Karmakar, S., & Basu, S. (2017). Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential. Scientific Reports, 7(1), 8925. https://doi.org/10.1038/s41598-017-09663-7.
- [9]. Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. https://doi.org/10.1016/j.fuproc.2012.09.004.
- [10]. Shi, X., Pang, X., Mu, Y., He, H., Shuai, S., Wang, J., ... & Li, R. (2006). Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmospheric Environment, 40(14), 2567-2574. https://doi.org/10.1016/j.atmosenv.2005.12.026.
- [11]. Jain, A., Joseph, K., Anthonysamy, S., & Gupta, G. S. (2011). Kinetics of oxidation of boron powder. Thermochimica Acta, 514(1-2), 67-73. https://doi.org/10.1016/j.tca.2010.12.004.
- [12]. Saxena, S. (2016). Introduction to Boron Nanostructures. Handbook of Boron Nanostructures, 1. https://doi.org/10.1201/b20934.
- [13]. Hosmane, N. S. (Ed.). (2011). Boron science: New technologies and applications. CRC Press. https://doi.org/10.1201/b11199.
- [14]. Marder, T. B., & Lin, Z. (Eds.). (2008). Contemporary metal boron chemistry I: Borylenes, boryls, borane sigma-complexes, and borohydrides (Vol. 130). Springer. https://doi.org/10.1007/978-3-540-77837-0.
- [15]. Young, G., Sullivan, K., Zachariah, M. R., & Yu, K. (2009). Combustion characteristics of boron nanoparticles. Combustion and Flame, 156(2), 322-333. https://doi.org/10.1016/j.combustflame.2008.10.007.
- [16]. Değirmenci, H., Küçükosman, R., & Yontar, A. A. (2024). An experimental study on droplet-scale combustion and atomization behavior in pure ethanol, methanol, and trimethyl borate, and their blends. Fuel, 357, 129716. https://doi.org/10.1016/j.fuel.2023.129716.
- [17]. Yontar, A. A., Sofuoğlu, D., Değirmenci, H., Ayaz, T., & Üstün, D. (2023). Investigation of combustion characteristics on triethyl borate, trimethyl borate, diesel, and gasoline droplets. Energy, 266, 126440. https://doi.org/10.1016/j.energy.2022.126440.
- [18]. Yontar, A. A., Özgüner, A. G., Adıgüzel, M. A., & Üstün, D. (2022). Combustion characteristics of trimethyl borate, diesel, and trimethyl borate-diesel blend droplets. Journal of the Energy Institute, 105, 221-231. https://doi.org/10.1016/j.joei.2022.09.006.
- [19]. Gan, Y., & Qiao, L. (2012). Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. International Journal of Heat and Mass Transfer, 55(21-22), 5777-5782. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2012.05.074.
- [20]. Owen, K., & Coley, T. (1990). Automotive fuels handbook. 5571174.
- [21]. Anderson, E. K., Koch, J. A., & Kyritsis, D. C. (2008). Phenomenology of electrostatically charged droplet combustion in normal gravity. Combustion and Flame, 154(3), 624-629. https://doi.org/10.1016/J.COMBUSTFLAME.2008.05.005.
- [22]. Küçükosman, R., Yontar, A. A., & Ocakoglu, K. (2022). Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. Journal of Analytical and Applied Pyrolysis, 165, 105575. https://doi.org/10.1016/j.jaap.2022.105575.
- [23]. Küçükosman, R., Değirmenci, H., Yontar, A. A., & Ocakoglu, K. (2023). Combustion characteristics of gasoline fuel droplets containing boron-based particles. Combustion and Flame, 255, 112887. https://doi.org/10.1016/j.combustflame.2023.112887.
- [24]. Liu, F., Hua, Y., Wu, H., Lee, C. F., & Wang, Z. (2018). Experimental and kinetic investigation on soot formation of n-butanol-gasoline blends in laminar coflow diffusion flames. Fuel, 213, 195-205. https://doi.org/10.1016/j.fuel.2017.10.106.
- [25]. Miglani, A., & Basu, S. (2015). Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets. Scientific Reports, 5(1), 15008. https://doi.org/10.1038/srep15008.
- [26]. Rasid, A. F. A., & Zhang, Y. (2019). Combustion characteristics and liquid-phase visualisation of single isolated diesel droplet with surface contaminated by soot particles. Proceedings of the Combustion Institute, 37(3), 3401-3408. https://doi.org/10.1016/j.proci.2018.08.023.
- [27]. Osborn, M. J., Talbert, P. T., & Huennekens, F. M. (1960). The structure of “active formaldehyde” (N5, N10-methylene tetrahydrofolic acid)1. Journal of the American Chemical Society, 82(18), 4921-4927. https://doi.org/10.1021/ja01503a043.
- [28]. Glassman, I. (1996). Chemical thermodynamics and flame temperatures, Combustion (pp. 1-33). Academic Press. https://doi.org/10.1016/B978-0-12-285852-9.X5000-0.
- [29]. Glassman, I., Yetter, R. A., & Glumac, N. G. (2014). Combustion. Academic Press.
https://doi.org/10.1016/C2011-0-05402-9.
- [30]. Naser, N., Yang, S. Y., Kalghatgi, G., & Chung, S. H. (2017). Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel, 187, 117-127. https://doi.org/10.1016/j.fuel.2016.09.013.
- [31]. Petrukhin, N. V., Grishin, N. N., & Sergeev, S. M. (2016). Ignition delay time−an important fuel property. Chemistry and Technology of Fuels and Oils, 51(6), 581-584. https://doi.org/10.1007/s10553-016-0642-0.
- [32]. Sarathy, S. M., Oßwald, P., Hansen, N., & Kohse-Höinghaus, K. (2014). Alcohol combustion chemistry. Progress in Energy and Combustion Science, 44, 40-102. https://doi.org/10.1016/j.pecs.2014.04.003.
- [33]. Chen, Z., He, J., Chen, H., Geng, L., & Zhang, P. (2021). Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel, 304, 121360. https://doi.org/10.1016/j.fuel.2021.121360.
- [34]. Jamrozik, A., Tutak, W., Pyrc, M., Gruca, M., & Kočiško, M. (2018). Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel, 221, 329-345. https://doi.org/10.1016/j.fuel.2018.02.098.
- [35]. Basu, S., & Miglani, A. (2016). Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. International Journal of Heat and Mass Transfer, 96, 482-503. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.053.
- [36]. Miglani, A., & Basu, S. (2015). Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. Journal of Heat Transfer, 137(10), 102001. https://doi.org/10.1115/1.4030394.
- [37]. Bello, M. N., Pantoya, M. L., Kappagantula, K., Wang, W. S., Vanapalli, S. A., Irvin, D. J., & Wood, L. M. (2015). Reaction dynamics of rocket propellant with magnesium oxide nanoparticles. Energy & Fuels, 29(9), 6111-6117. https://doi.org/10.1021/acs.energyfuels.5b00905.
- [38]. Shang, W., Yang, S., Xuan, T., He, Z., & Cao, J. (2020). Experimental studies on combustion and microexplosion characteristics of N-alkane droplets. Energy & Fuels, 34(12), 16613-16623. https://doi.org/10.1021/acs.energyfuels.0c02904.
Investigation of Combustion Properties of Triethyl Borate, Gasoline and Triethyl Borate-Gasoline Mixture
Yıl 2024,
, 19 - 29, 29.03.2024
Duygu Sofuoğlu
,
Hüseyin Değirmenci
,
Ahmet Alper Yontar
Öz
In recent years, the search for alternative fuels to replace traditional fuels has been of increasing importance and in this context, boron-derived fuels are considered as a promising alternative for next generation energy sources. Accordingly, this study investigates the combustion characteristics of pure and mixed droplets of triethyl borate (TEB), a new generation fuel, and petrol, a conventional fuel. In the study, the evolution of the fuel droplet diameter, flame structure and flame temperature over time were observed with high-speed camera and thermal camera devices. In the experiments, petrol fuel was used as a reference and 20%TEB, 40%TEB, 60%TEB and 80%TEB fuel blends were prepared by adding TEB on a mass basis. Analysis of high-speed camera images showed that TEB-containing fuel droplets have a large non-luminous region during the combustion process, unlike petrol fuel. In the flames obtained from pure and mixed fuels, the highest flame temperature was recorded in droplets of 80%TEB mixture. In addition, the shortest extinction time was again observed in the 80%TEB mixture. As a result of the experiments, it was found that the shortest ignition delay was observed in 60%TEB fuel droplets and the longest ignition delay was observed in pure petrol. In general, it was reported that the addition of TEB decreased the ignition delay, increased the total extinction time and increased the temperature during combustion compared to petrol. The curves of the time-dependent variation of the dimensionless square droplet diameter (D/D0)² of the fuel droplets analysed in the study generally exhibited properties in accordance with the D²-law.
Destekleyen Kurum
TÜBİTAK (Scientific and Technological Research Council of Turkey) and Tarsus University
Proje Numarası
TUBİTAK 120M844 projesi ve Tarsus Üniversitesi BAP MF.20.001 – BAP MF.21.005 projeleri
Teşekkür
The authors would like to express their gratitude to TUBITAK (Scientific and Technological Research Council of Turkey) and Tarsus University for providing financial support for this research through TUBITAK 120M844 project and Tarsus University BAP MF.20.001 - BAP MF.21.005 projects.
Kaynakça
- Kaynakça (References)
[1]. Shahir, S. A., Masjuki, H. H., Kalam, M. A., Imran, A., Fattah, I. R., & Sanjid, A. (2014). Feasibility of diesel-biodiesel-ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renewable and Sustainable Energy Reviews, 32, 379-395. https://doi.org/10.1016/j.rser.2014.01.029.
- [2]. Yusaf, T., Fernandes, L., Abu Talib, A. R., Altarazi, Y. S. M., Alrefae, W., Kadirgama, K., … & Laimon, M. (2022). Sustainable aviation-Hydrogen is the future. Sustainability, 14(1), 548. https://doi.org/10.3390/su14010548.
- [3]. Edwards, T., Colket, M., Cernansky, N., Dryer, F., Egolfopoulos, F., Friend, D., & Williams, S. (2007). Development of an experimental database and kinetic models for surrogate jet fuels. 45th AIAA aerospace sciences meeting and exhibit, 770. https://doi.org/10.2514/6.2007-770.
- [4]. Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J., & Silke, E. J. (2009). A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame, 156(1), 181-199. https://doi.org/10.1016/j.combustflame. 2008.07.014.
- [5]. Xu, Y., & Avedisian, C. T. (2015). Combustion of n-butanol, gasoline, and n-butanol/gasoline mixture droplets. Energy & Fuels, 29(5), 3467-3475. https://doi.org/10.1021/acs.energyfuels. 5b00158.
- [6]. Pan, K. L., & Chiu, M. C. (2013). Droplet combustion of blended fuels with alcohol and biodiesel/diesel in microgravity condition. Fuel, 113, 757-765. https://doi.org/10.1016/j.fuel.2013.03.029.
- [7]. Botero, M. L., Huang, Y., Zhu, D. L., Molina, A., & Law, C. K. (2012). Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures. Fuel, 94, 342-347. https://doi.org/10.1016/j.fuel.2011.10.049.
- [8]. Rao, D. C. K., Karmakar, S., & Basu, S. (2017). Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential. Scientific Reports, 7(1), 8925. https://doi.org/10.1038/s41598-017-09663-7.
- [9]. Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. https://doi.org/10.1016/j.fuproc.2012.09.004.
- [10]. Shi, X., Pang, X., Mu, Y., He, H., Shuai, S., Wang, J., ... & Li, R. (2006). Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmospheric Environment, 40(14), 2567-2574. https://doi.org/10.1016/j.atmosenv.2005.12.026.
- [11]. Jain, A., Joseph, K., Anthonysamy, S., & Gupta, G. S. (2011). Kinetics of oxidation of boron powder. Thermochimica Acta, 514(1-2), 67-73. https://doi.org/10.1016/j.tca.2010.12.004.
- [12]. Saxena, S. (2016). Introduction to Boron Nanostructures. Handbook of Boron Nanostructures, 1. https://doi.org/10.1201/b20934.
- [13]. Hosmane, N. S. (Ed.). (2011). Boron science: New technologies and applications. CRC Press. https://doi.org/10.1201/b11199.
- [14]. Marder, T. B., & Lin, Z. (Eds.). (2008). Contemporary metal boron chemistry I: Borylenes, boryls, borane sigma-complexes, and borohydrides (Vol. 130). Springer. https://doi.org/10.1007/978-3-540-77837-0.
- [15]. Young, G., Sullivan, K., Zachariah, M. R., & Yu, K. (2009). Combustion characteristics of boron nanoparticles. Combustion and Flame, 156(2), 322-333. https://doi.org/10.1016/j.combustflame.2008.10.007.
- [16]. Değirmenci, H., Küçükosman, R., & Yontar, A. A. (2024). An experimental study on droplet-scale combustion and atomization behavior in pure ethanol, methanol, and trimethyl borate, and their blends. Fuel, 357, 129716. https://doi.org/10.1016/j.fuel.2023.129716.
- [17]. Yontar, A. A., Sofuoğlu, D., Değirmenci, H., Ayaz, T., & Üstün, D. (2023). Investigation of combustion characteristics on triethyl borate, trimethyl borate, diesel, and gasoline droplets. Energy, 266, 126440. https://doi.org/10.1016/j.energy.2022.126440.
- [18]. Yontar, A. A., Özgüner, A. G., Adıgüzel, M. A., & Üstün, D. (2022). Combustion characteristics of trimethyl borate, diesel, and trimethyl borate-diesel blend droplets. Journal of the Energy Institute, 105, 221-231. https://doi.org/10.1016/j.joei.2022.09.006.
- [19]. Gan, Y., & Qiao, L. (2012). Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles. International Journal of Heat and Mass Transfer, 55(21-22), 5777-5782. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2012.05.074.
- [20]. Owen, K., & Coley, T. (1990). Automotive fuels handbook. 5571174.
- [21]. Anderson, E. K., Koch, J. A., & Kyritsis, D. C. (2008). Phenomenology of electrostatically charged droplet combustion in normal gravity. Combustion and Flame, 154(3), 624-629. https://doi.org/10.1016/J.COMBUSTFLAME.2008.05.005.
- [22]. Küçükosman, R., Yontar, A. A., & Ocakoglu, K. (2022). Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. Journal of Analytical and Applied Pyrolysis, 165, 105575. https://doi.org/10.1016/j.jaap.2022.105575.
- [23]. Küçükosman, R., Değirmenci, H., Yontar, A. A., & Ocakoglu, K. (2023). Combustion characteristics of gasoline fuel droplets containing boron-based particles. Combustion and Flame, 255, 112887. https://doi.org/10.1016/j.combustflame.2023.112887.
- [24]. Liu, F., Hua, Y., Wu, H., Lee, C. F., & Wang, Z. (2018). Experimental and kinetic investigation on soot formation of n-butanol-gasoline blends in laminar coflow diffusion flames. Fuel, 213, 195-205. https://doi.org/10.1016/j.fuel.2017.10.106.
- [25]. Miglani, A., & Basu, S. (2015). Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets. Scientific Reports, 5(1), 15008. https://doi.org/10.1038/srep15008.
- [26]. Rasid, A. F. A., & Zhang, Y. (2019). Combustion characteristics and liquid-phase visualisation of single isolated diesel droplet with surface contaminated by soot particles. Proceedings of the Combustion Institute, 37(3), 3401-3408. https://doi.org/10.1016/j.proci.2018.08.023.
- [27]. Osborn, M. J., Talbert, P. T., & Huennekens, F. M. (1960). The structure of “active formaldehyde” (N5, N10-methylene tetrahydrofolic acid)1. Journal of the American Chemical Society, 82(18), 4921-4927. https://doi.org/10.1021/ja01503a043.
- [28]. Glassman, I. (1996). Chemical thermodynamics and flame temperatures, Combustion (pp. 1-33). Academic Press. https://doi.org/10.1016/B978-0-12-285852-9.X5000-0.
- [29]. Glassman, I., Yetter, R. A., & Glumac, N. G. (2014). Combustion. Academic Press.
https://doi.org/10.1016/C2011-0-05402-9.
- [30]. Naser, N., Yang, S. Y., Kalghatgi, G., & Chung, S. H. (2017). Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel, 187, 117-127. https://doi.org/10.1016/j.fuel.2016.09.013.
- [31]. Petrukhin, N. V., Grishin, N. N., & Sergeev, S. M. (2016). Ignition delay time−an important fuel property. Chemistry and Technology of Fuels and Oils, 51(6), 581-584. https://doi.org/10.1007/s10553-016-0642-0.
- [32]. Sarathy, S. M., Oßwald, P., Hansen, N., & Kohse-Höinghaus, K. (2014). Alcohol combustion chemistry. Progress in Energy and Combustion Science, 44, 40-102. https://doi.org/10.1016/j.pecs.2014.04.003.
- [33]. Chen, Z., He, J., Chen, H., Geng, L., & Zhang, P. (2021). Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel, 304, 121360. https://doi.org/10.1016/j.fuel.2021.121360.
- [34]. Jamrozik, A., Tutak, W., Pyrc, M., Gruca, M., & Kočiško, M. (2018). Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel, 221, 329-345. https://doi.org/10.1016/j.fuel.2018.02.098.
- [35]. Basu, S., & Miglani, A. (2016). Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. International Journal of Heat and Mass Transfer, 96, 482-503. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.053.
- [36]. Miglani, A., & Basu, S. (2015). Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. Journal of Heat Transfer, 137(10), 102001. https://doi.org/10.1115/1.4030394.
- [37]. Bello, M. N., Pantoya, M. L., Kappagantula, K., Wang, W. S., Vanapalli, S. A., Irvin, D. J., & Wood, L. M. (2015). Reaction dynamics of rocket propellant with magnesium oxide nanoparticles. Energy & Fuels, 29(9), 6111-6117. https://doi.org/10.1021/acs.energyfuels.5b00905.
- [38]. Shang, W., Yang, S., Xuan, T., He, Z., & Cao, J. (2020). Experimental studies on combustion and microexplosion characteristics of N-alkane droplets. Energy & Fuels, 34(12), 16613-16623. https://doi.org/10.1021/acs.energyfuels.0c02904.