Araştırma Makalesi
BibTex RIS Kaynak Göster

Dissolution behavior and kinetic investigation of 〖Ca〗^(2+) in the dissolution of colemanite in propionic acid presence saturated with synthetic flue gas

Yıl 2024, , 9 - 18, 29.03.2024
https://doi.org/10.30728/boron.1380919

Öz

Colemanite (〖2CaO.3B〗_2 O_3.5H_2 O) is a calcium borate mineral and can be expressed as the primary material of industrial production of boric acid. Boric acid is one of the most essential raw materials obtained by solving colemanite ore in acidic solutions and gases. The dissolution behavior and kinetics of 〖Ca〗^(2+) in a solution of colemanite in a propionic acid solution saturated with synthetic flue gas were examined. In this context; the effects of particle size, reaction temperature, acid concentration, solid-liquid ratio and synthetic flue gas flow rate parameters were investigated. According to the experimental data, it was observed that the amount of 〖Ca〗^(2+) passing to the solution increased with the increase of the reaction temperature, acid concentration and gas flow rate, and with the decrease in solid-liquid ratio and grain size. Experimental results were analyzed by homogeneous and heterogeneous models using the Statistica package program, and it was determined that the dissolution of 〖Ca〗^(2+) in solution complies with the “Avrami” model. The activation energy (E) was found as 〖26.83 kJ.mol〗^(-1) and the Arrhenius constant (A) was found as 〖8.9*10〗^3.

Teşekkür

This study was conducted out in the laboratories of Çankırı Karatekin University. The author thanks Prof. Dr. M. Muhtar KOCAKERİM for support and helpful discussion.

Kaynakça

  • [1] Doğan, H.T., Yartaşı, A., (2009). Kinetic investigation of reaction between ulexite ore and phosphoric acid. Hydrometallurgy, 96(4),294-299. https://doi.org/10.1016/j.hydromet.2008.11.006
  • [2] Eti Maden İşletmeleri, Strateji Geliştirme Dairesi. (2021). Bor Sektör Raporu. https://www.etimaden.gov.tr/storage/2021/Bor_Sektor_Raporu_2020.pdf
  • [3] İçelli, O., Erzeneoǧlu, S., Boncukçuoǧluc, R., (2003). Measurement of X-Ray transmission factors of some boron compounds. Radiation measurements, 37(6), 613-616. https://doi.org/10.1016/S1350-4487(03)00049-0
  • [4] Garrett, D.E. (1998). Borates: handbook of deposits, processing, properties, and use. Elsevier. https://doi.org/10.1016/B978-0-12-276060-0.X5000-1
  • [5] Şimşek, H.M., Guliyev, R., Beşe, A.V., İçen, H., (2017). Investigation of the solubility of borogypsum diammonium in hydrogen phosphate solutions. Journal of Boron, 2(2):82-86.
  • [6] Sert., H, Yıldıran. H., Toscalı, D., (2012). An investigation on the production of sodium metaborate dihydrate from ulexite by using trona and lime. International Journal of Hydrogen Energy, 37(7), 5833-5839. https://doi.org/10.1016/j.ijhydene.2012.01.012
  • [7] Karagöz. Ö., Kuşlu. S., (2021). Synthesis of pure potassium pentaborate (KB5) from potassium dihydrogen phosphate (KH2PO4) and colemanite. Chemical Papers, 75, 5963-5969. https://doi.org/10.1007/s11696-021-01771-z
  • [8] Şimşek. H.M., Yeşilyurt, M., (2021). Investigation of the kinetic mechanism of colemanite in Sodium Bisulfate solution. Journal of Boron, 6(4), 395-401. https://doi.org/10.30728/boron.959361
  • [9] Arasu, A.V., Sornakumar, T., (2007). Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Solar Energy, 81(10),1273-1279. https://doi.org/10.1016/j.solener.2007.01.005
  • [10] Künkül, A., Yapici, S., Kocakerim, M.M., Copur. M., (1997). Dissolution kinetics of ulexite in ammonia solutions saturated with CO2. Hydrometallurgy, 44(1-2),135-145. https://doi.org/10.1016/S0304-386X(96)00037-0
  • [11] Tombal, T., Özkan, Ş., Kurşun Ünver İ, Osmanlioğlu, A., (2016). Properties, production, uses of boron compounds and their importance in nuclear reactor technology. Boron, 1(2),86-95. https://dergipark.org.tr/en/pub/boron/issue/24508/259751
  • [12] Çalımlı, M.H., Mehmet, T., Kocakerim, M.M., (2020). Investigation dissolution behaviours and kinetics parameters of ulexite in boric acid solution. International Journal of Chemistry and Technology, 4(2),121-129. https://doi.org/10.32571/ijct.734917
  • [13] Balasubramanian, R., Lakshmi Narasimhan, T., Viswanathan, R., Nalini, S., (2008). Investigation of the vaporization of boric acid by transpiration thermogravimetry and Knudsen effusion mass spectrometry. The Journal of Physical Chemistry B, 112(44),13873-13884. https://doi.org/10.1021/jp8058883
  • [14] Mumcu Şımşek, H., Gulıyev R., A. (2022). Taguchi Optimization Study about the Dissolution of Colemanite in Ammonium Bisulfate (NH4HSO4) Solution. Iran J Chem Chem Eng Research Article Vol, 41(8). https://doi.org/10.30492/ijcce.2021.530973.4757
  • [15] Kurtbaş, A., Kocakerim, M.M., Küçük. Ö., Yartaşı, A. (2006). Dissolution of colemanite in aqueous solutions saturated with both sulfur dioxide (SO2) gas and boric acid. Industrial & engineering chemistry research, 45(6),1857-1862. http://dx.doi.org/10.1021/ie050050i
  • [16] Guliyev, R., Kuşlu, S., Çalban, T., Çolak, S. (2012). Leaching kinetics of colemanite in ammonium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 18(4),1202-1207. http://dx.doi.org/10.1016/j.jiec.2011.11.082
  • [17] Kizilca, M., Copur, M., (2015). Kinetic investigation of reaction between colemanite ore and methanol. Chemical Engineering Communications, 202(11),1528-1534. http://dx.doi.org/10.1080/00986445.2014.956739
  • [18] Helvacı, C. (2017). Borate deposits: An overview and future forecast with regard to mineral deposits. Journal of Boron, 2(2), 59-70. https://dergipark.org.tr/en/pub/boron/issue/31236/302668
  • [19] Sis. H., Bentli, I., Demirkiran, N., Ekmekyapar, A. (2019). Investigating dissolution of colemanite in sulfuric acid solutions by particle size measurements. Separation Science and Technology, 54(8),1353-1362. http://dx.doi.org/10.1080/01496395.2018.1532961
  • [20] Abi, C.E. (2014). Effect of borogypsum on brick properties. Construction and Building Materials, 59,195-203. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.012
  • [21] Bulutcu, F., Dogrul, A., Güç, M.O. (2002). The involvement of nitric oxide in the analgesic effects of ketamine. Life Sciences, 71(7),841-853. https://doi.org/10.1016/s0024-3205(02)01765-4
  • [22] Tunç, M., Kocakerim, M.M., Küçük, Ö., Aluz. M. (2007). Dissolution of colemanite in (NH4)2SO4 solutions. Korean Journal of Chemical Engineering, 24, 55-59. http://dx.doi.org/10.1007/s11814-007-5009-0
  • [23] Bulutcu, A., Ertekin, C., Celikoyan, M.K. (2008). Impurity control in the production of boric acid from colemanite in the presence of propionic acid. Chemical Engineering and Processing: Process Intensification, 47(12),2270-2274. http://dx.doi.org/10.1016/j.cep.2007.12.012
  • [24] Phechkrajang, C.M., Yooyong, S. (2017). Fast and simple method for semiquantitative determination of calcium propionate in bread samples. Journal of Food and Drug Analysis, 25(2),254-259. https://doi.org/10.1016/j.jfda.2016.03.013
  • [25] Tunç, M., Kocakerim, M.M., Küçük. Ö., Aluz. M. (2007). Dissolution of colemanite in (NH4)2SO4 solutions. Korean Journal of Chemical Engineering, 24,55-59. http://dx.doi.org/10.1007/s11814-007-5009-0
  • [26] Şimşek, H.M., Guliyev. R., Beşe, A.V. (2018). Dissolution kinetics of borogypsum in di-ammonium hydrogen phosphate solutions. İnternational Journal of Hydrogen Energy, 43(44),20262-20270. http://dx.doi.org/10.1016/j.ijhydene.2018.07.089
  • [27] Cetin, E., Eroğlu, İ., Özkar, S. (2001). Kinetics of gypsum formation and growth during the dissolution of colemanite in sulfuric acid. Journal of Crystal Growth, 231(4),559-567. https://doi.org/10.1016/S0022-0248(01)01525-1
  • [28] Okur, H., Tekin, T., Ozer, A.K., Bayramoglu, M. (2002). Effect of ultrasound on the dissolution of colemanite in H2SO4. Hydrometallurgy, 67(1-3), 79-86. http://dx.doi.org/10.1016/S0304-386X(02)00137-8
  • [29] Abanades, S,, Kimura, H., Otsuka, H. (2015). Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor. International Journal of Hydrogen Energy. 40(34),10744-10755. https://doi.org/10.1016/j.ijhydene.2015.07.023
  • [30] Naktiyok, J., Bayrakçeken, H., Özer, A.K., Gülaboğlu, M.Ş. (2013). Kinetics of thermal decomposition of phospholipids obtained from phosphate rock. Fuel Processing Technology, 116,158-164. http://dx.doi.org/10.1016/j.fuproc.2013.05.007
  • [31] Levenspiel, O. (1998). Chemical reaction engineering: John wiley & Sons. ISBN:978-0-471-25424-9
  • [32] Alkan, M., Doğan, M. (2004). Dissolution kinetics of colemanite in oxalic acid solutions. Chemical Engineering and Processing: Process Intensification, 43(7),867-872. https://doi.org/10.1016/S0255-2701(03)00108-9
  • [33] Bayca, S.U., Kocan. F., Abali. Y. (2014). Dissolution of colemanite process waste in oxalic acid solutions. Environmental Progress & Sustainable Energy, 33(4),1111-1116. https://doi.org/10.1002/ep.11889
  • [34] Demirkıran, N., Künkül, A. (2007). Dissolution kinetics of ulexite in perchloric acid solutions. International Journal of Mineral Processing, 83(1-2),76-80. http://dx.doi.org/10.1016/j.minpro.2007.04.007
  • [35] Elçiçek, H., Kocakerim, M.M. (2018). Leaching kinetics of ulexite ore in aqueous medium at different CO2 partial pressures. Brazilian Journal of Chemical Engineering, 35,111-122. https://doi.org/10.1590/0104-6632.20180351s20160084

Sentetik baca gazıyla doyurulmuş propiyonik asit varlığında kolemanitin çözünmesinde çözeltiye geçen 〖Ca〗^(+2)’nın çözünme davranışı ve kinetik incelenmesi

Yıl 2024, , 9 - 18, 29.03.2024
https://doi.org/10.30728/boron.1380919

Öz

Kolemanit (〖2CaO.3B〗_2 O_3.5H_2 O) bir kalsiyum borat mineralidir ve endüstriyel borik asit üretiminin temel maddesi olarak ifade edilebilir. Borik asit, kolemanit cevherinin asidik çözelti ve gazlarda çözülmesiyle elde edilen en önemli hammaddelerden biridir. Kolemanitin sentetik baca gazıyla doyurulmuş propiyonik asit çözeltisinde çözeltiye geçen 〖Ca〗^(2+)’un çözünme davranışı ve kinetiği incelenmiştir. Bu kapsamda; tane boyutu, reaksiyon sıcaklığı, asit konsantrasyonu, katı-sıvı oranı ve sentetik baca gazı debisi parametrelerinin etkisi araştırılmıştır. Deneysel verilere göre çözeltiye geçen 〖Ca〗^(2+) miktarı; reaksiyon sıcaklığı, asit konsantrasyonu ve gaz debisinin artması ile katı sıvı oranı ve tane boyutunun azalmasıyla arttığı gözlemlenmiştir. Deneysel veriler Statistica paket programı vasıtasıyla homojen ve hetorojen modellerine göre analiz edilmiş ve çözeltiye geçen 〖Ca〗^(2+)’un çözünmesi “Avrami modeline” uyduğu belirlenmiştir. Aktivasyon enerjisi (E) 〖26.83 kJ.mol〗^(-1) ve Arrhenius sabiti (A) 〖8.9*10〗^3 olarak hesaplanmıştır.

Kaynakça

  • [1] Doğan, H.T., Yartaşı, A., (2009). Kinetic investigation of reaction between ulexite ore and phosphoric acid. Hydrometallurgy, 96(4),294-299. https://doi.org/10.1016/j.hydromet.2008.11.006
  • [2] Eti Maden İşletmeleri, Strateji Geliştirme Dairesi. (2021). Bor Sektör Raporu. https://www.etimaden.gov.tr/storage/2021/Bor_Sektor_Raporu_2020.pdf
  • [3] İçelli, O., Erzeneoǧlu, S., Boncukçuoǧluc, R., (2003). Measurement of X-Ray transmission factors of some boron compounds. Radiation measurements, 37(6), 613-616. https://doi.org/10.1016/S1350-4487(03)00049-0
  • [4] Garrett, D.E. (1998). Borates: handbook of deposits, processing, properties, and use. Elsevier. https://doi.org/10.1016/B978-0-12-276060-0.X5000-1
  • [5] Şimşek, H.M., Guliyev, R., Beşe, A.V., İçen, H., (2017). Investigation of the solubility of borogypsum diammonium in hydrogen phosphate solutions. Journal of Boron, 2(2):82-86.
  • [6] Sert., H, Yıldıran. H., Toscalı, D., (2012). An investigation on the production of sodium metaborate dihydrate from ulexite by using trona and lime. International Journal of Hydrogen Energy, 37(7), 5833-5839. https://doi.org/10.1016/j.ijhydene.2012.01.012
  • [7] Karagöz. Ö., Kuşlu. S., (2021). Synthesis of pure potassium pentaborate (KB5) from potassium dihydrogen phosphate (KH2PO4) and colemanite. Chemical Papers, 75, 5963-5969. https://doi.org/10.1007/s11696-021-01771-z
  • [8] Şimşek. H.M., Yeşilyurt, M., (2021). Investigation of the kinetic mechanism of colemanite in Sodium Bisulfate solution. Journal of Boron, 6(4), 395-401. https://doi.org/10.30728/boron.959361
  • [9] Arasu, A.V., Sornakumar, T., (2007). Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Solar Energy, 81(10),1273-1279. https://doi.org/10.1016/j.solener.2007.01.005
  • [10] Künkül, A., Yapici, S., Kocakerim, M.M., Copur. M., (1997). Dissolution kinetics of ulexite in ammonia solutions saturated with CO2. Hydrometallurgy, 44(1-2),135-145. https://doi.org/10.1016/S0304-386X(96)00037-0
  • [11] Tombal, T., Özkan, Ş., Kurşun Ünver İ, Osmanlioğlu, A., (2016). Properties, production, uses of boron compounds and their importance in nuclear reactor technology. Boron, 1(2),86-95. https://dergipark.org.tr/en/pub/boron/issue/24508/259751
  • [12] Çalımlı, M.H., Mehmet, T., Kocakerim, M.M., (2020). Investigation dissolution behaviours and kinetics parameters of ulexite in boric acid solution. International Journal of Chemistry and Technology, 4(2),121-129. https://doi.org/10.32571/ijct.734917
  • [13] Balasubramanian, R., Lakshmi Narasimhan, T., Viswanathan, R., Nalini, S., (2008). Investigation of the vaporization of boric acid by transpiration thermogravimetry and Knudsen effusion mass spectrometry. The Journal of Physical Chemistry B, 112(44),13873-13884. https://doi.org/10.1021/jp8058883
  • [14] Mumcu Şımşek, H., Gulıyev R., A. (2022). Taguchi Optimization Study about the Dissolution of Colemanite in Ammonium Bisulfate (NH4HSO4) Solution. Iran J Chem Chem Eng Research Article Vol, 41(8). https://doi.org/10.30492/ijcce.2021.530973.4757
  • [15] Kurtbaş, A., Kocakerim, M.M., Küçük. Ö., Yartaşı, A. (2006). Dissolution of colemanite in aqueous solutions saturated with both sulfur dioxide (SO2) gas and boric acid. Industrial & engineering chemistry research, 45(6),1857-1862. http://dx.doi.org/10.1021/ie050050i
  • [16] Guliyev, R., Kuşlu, S., Çalban, T., Çolak, S. (2012). Leaching kinetics of colemanite in ammonium hydrogen sulphate solutions. Journal of Industrial and Engineering Chemistry, 18(4),1202-1207. http://dx.doi.org/10.1016/j.jiec.2011.11.082
  • [17] Kizilca, M., Copur, M., (2015). Kinetic investigation of reaction between colemanite ore and methanol. Chemical Engineering Communications, 202(11),1528-1534. http://dx.doi.org/10.1080/00986445.2014.956739
  • [18] Helvacı, C. (2017). Borate deposits: An overview and future forecast with regard to mineral deposits. Journal of Boron, 2(2), 59-70. https://dergipark.org.tr/en/pub/boron/issue/31236/302668
  • [19] Sis. H., Bentli, I., Demirkiran, N., Ekmekyapar, A. (2019). Investigating dissolution of colemanite in sulfuric acid solutions by particle size measurements. Separation Science and Technology, 54(8),1353-1362. http://dx.doi.org/10.1080/01496395.2018.1532961
  • [20] Abi, C.E. (2014). Effect of borogypsum on brick properties. Construction and Building Materials, 59,195-203. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.012
  • [21] Bulutcu, F., Dogrul, A., Güç, M.O. (2002). The involvement of nitric oxide in the analgesic effects of ketamine. Life Sciences, 71(7),841-853. https://doi.org/10.1016/s0024-3205(02)01765-4
  • [22] Tunç, M., Kocakerim, M.M., Küçük, Ö., Aluz. M. (2007). Dissolution of colemanite in (NH4)2SO4 solutions. Korean Journal of Chemical Engineering, 24, 55-59. http://dx.doi.org/10.1007/s11814-007-5009-0
  • [23] Bulutcu, A., Ertekin, C., Celikoyan, M.K. (2008). Impurity control in the production of boric acid from colemanite in the presence of propionic acid. Chemical Engineering and Processing: Process Intensification, 47(12),2270-2274. http://dx.doi.org/10.1016/j.cep.2007.12.012
  • [24] Phechkrajang, C.M., Yooyong, S. (2017). Fast and simple method for semiquantitative determination of calcium propionate in bread samples. Journal of Food and Drug Analysis, 25(2),254-259. https://doi.org/10.1016/j.jfda.2016.03.013
  • [25] Tunç, M., Kocakerim, M.M., Küçük. Ö., Aluz. M. (2007). Dissolution of colemanite in (NH4)2SO4 solutions. Korean Journal of Chemical Engineering, 24,55-59. http://dx.doi.org/10.1007/s11814-007-5009-0
  • [26] Şimşek, H.M., Guliyev. R., Beşe, A.V. (2018). Dissolution kinetics of borogypsum in di-ammonium hydrogen phosphate solutions. İnternational Journal of Hydrogen Energy, 43(44),20262-20270. http://dx.doi.org/10.1016/j.ijhydene.2018.07.089
  • [27] Cetin, E., Eroğlu, İ., Özkar, S. (2001). Kinetics of gypsum formation and growth during the dissolution of colemanite in sulfuric acid. Journal of Crystal Growth, 231(4),559-567. https://doi.org/10.1016/S0022-0248(01)01525-1
  • [28] Okur, H., Tekin, T., Ozer, A.K., Bayramoglu, M. (2002). Effect of ultrasound on the dissolution of colemanite in H2SO4. Hydrometallurgy, 67(1-3), 79-86. http://dx.doi.org/10.1016/S0304-386X(02)00137-8
  • [29] Abanades, S,, Kimura, H., Otsuka, H. (2015). Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor. International Journal of Hydrogen Energy. 40(34),10744-10755. https://doi.org/10.1016/j.ijhydene.2015.07.023
  • [30] Naktiyok, J., Bayrakçeken, H., Özer, A.K., Gülaboğlu, M.Ş. (2013). Kinetics of thermal decomposition of phospholipids obtained from phosphate rock. Fuel Processing Technology, 116,158-164. http://dx.doi.org/10.1016/j.fuproc.2013.05.007
  • [31] Levenspiel, O. (1998). Chemical reaction engineering: John wiley & Sons. ISBN:978-0-471-25424-9
  • [32] Alkan, M., Doğan, M. (2004). Dissolution kinetics of colemanite in oxalic acid solutions. Chemical Engineering and Processing: Process Intensification, 43(7),867-872. https://doi.org/10.1016/S0255-2701(03)00108-9
  • [33] Bayca, S.U., Kocan. F., Abali. Y. (2014). Dissolution of colemanite process waste in oxalic acid solutions. Environmental Progress & Sustainable Energy, 33(4),1111-1116. https://doi.org/10.1002/ep.11889
  • [34] Demirkıran, N., Künkül, A. (2007). Dissolution kinetics of ulexite in perchloric acid solutions. International Journal of Mineral Processing, 83(1-2),76-80. http://dx.doi.org/10.1016/j.minpro.2007.04.007
  • [35] Elçiçek, H., Kocakerim, M.M. (2018). Leaching kinetics of ulexite ore in aqueous medium at different CO2 partial pressures. Brazilian Journal of Chemical Engineering, 35,111-122. https://doi.org/10.1590/0104-6632.20180351s20160084
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Research Makaleler
Yazarlar

Mücahit Uğur 0000-0002-3746-5683

Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 25 Ekim 2023
Kabul Tarihi 21 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uğur, M. (2024). Dissolution behavior and kinetic investigation of 〖Ca〗^(2+) in the dissolution of colemanite in propionic acid presence saturated with synthetic flue gas. Journal of Boron, 9(1), 9-18. https://doi.org/10.30728/boron.1380919