Investigation of flexural properties of hexagonal boron nitride added thermoplastic composites
Yıl 2024,
, 69 - 75, 28.06.2024
Özgür Demircan
,
Adnan Kalaycı
Öz
In this study, weight percentages (wps) of 0%, 0.5%, 2% hexagonal boron nitrides (hBN) were added to 30 wt.% short glass fiber reinforced Polyamide (PA) 66 matrix (GF30) to fabricate the thermoplastic composite materials. The hBN additives were applied by coating of granules of 30 wt.% short glass fiber reinforced PA 66 (GF30) materials. The hBN coated thermoplastic materials were produced by plastic injection method. The effect of different wps of hBNs on the flexural properties of thermoplastic composites were examined in the produced samples.
The produced samples were subjected to three-point bending tests. When looking at the results of the three-point bending tests, the highest increase of flexural properties was obtained in the sample of PA66/GF30/2% hBN added thermoplastic composite. The samples with 2 wt% hBN showed the best flexural properties with an improvement of 85 and 52% flexural modulus and strength, respectively, compared to the samples without hBN (PA66/GF30). According to the obtained results of this study, as the percentage of the hBN weight contents increased, the flexural strengths and flexural modulus increased significantly. It was concluded that hBN coated thermoplastic composite samples demonstrated high improvements of flexural properties at optimum rates of hBN.
Etik Beyan
No potential conflict of interest was reported by the authors
Destekleyen Kurum
the Boron Research Institute of the Turkish Energy, Nuclear and Mineral Research Council and Ondokuz Mayıs University
Proje Numarası
2019-30-06-30-003, PYO.TIP.1908.20.001 , PYO.MUH.1901.18.008
Teşekkür
We would like to thank the Boron Research Institute of the Turkish Energy, Nuclear and Mineral Research Council for supporting our work with the project number of 2019-30-06-30-003 and the Research fund of Ondokuz Mayıs University with the project numbers of PYO.TIP.1908.20.001 and PYO.MUH.1901.18.008.
Kaynakça
- [1] Do, N. B. D., Imenes, K., Aasmundtveit, K. E., Nguyen, H. V., & Andreassen, E. (2023). Thermal conductivity and mechanical properties of polymer composites with hexagonal boron nitride—A comparison of three processing methods: Injection moulding, powder bed fusion and casting. Polymers, 15(6), 1552. https://doi.org/10.3390/polym15061552.
- [2] Vikram, K., Pramanik, S., & Bhaumik, S. (2023). Effect of hexagonal boron nitride on structural, mechanical, and tribological behavior of polyamide 6/glass fibers (5 wt%) hybrid nanocomposites. Iran Polymer Journal, 33, 551-530. https://doi.org/10.1007/s13726-023-01261-x.
- [3] Travas, L., Rujnic H. M., & Pilipovic A. (2023). Optimization of thermal conductivity and tensile properties of high-density polyethylene by addition of expanded graphite and boron nitride. Polymers, 15(17), 3645. https://doi.org/10.3390/polym15173645.
- [4] You, J., Choi, H. H, Lee, Y. M., Cho, J., Park, M., Lee, S. S., & Park, J. H. (2019). Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties, Composites Part B: Engineering, 164, 710-719. https://doi.org/10.1016/j.compositesb.2019.01.100.
- [5] Gülteki̇n, K., & Korkmaz, Y. (2022). The effect of boron nanoparticle reinforcement on the structural and mechanical performance of nanocomposites and bonded joints exposed to an acid environment, International Journal of Adhesion and Adhesives, 118, 103244, https://doi.org/10.1016/j.ijadhadh.2022.103244.
- [6] Ashrafi, B., Jakubinek, M. B., Martinez-Rubi, Y., Rahmat, M., Djokic, D., Laquas, K., Park D., Kim, K., Simard, B., & Yousefpour, A. (2017). Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes. Acta Astronautica, 141, 57–63. https://doi.org/10.1016/j.actaastro.2017.09.023.
- [7] Ayrilmis, N., Dundar, T., Kaymakci, A., Ozdemir, F., & Kwon, J.H. (2014). Mechanical and thermal properties of wood-plastic composites reinforced with hexagonal boron nitride. Polymer Composites, 35, 194– 200. https://doi.org/10.1002/pc.22650.
- [8] Cai, W., Mu, X., Pan, Y., Guo, W., Wang, J., Yuan, B., Feng, X., Tai, Q., & Hu, Y. (2018). Facile fabrication of organically modified boron nitride nanosheets and its effect on the thermal stability, flame retardant, and mechanical properties of thermoplastic polyurethane. Polymers for Advanced Technologies, 29, 2545–2552. https://doi.org/10.1002/pat.4366.
- [9] Yu, C., Zhang, J., Li, Z., Tian, W., Wang, L., Luo, J., Li, O., Fan, X., & Yao, Y. (2017). Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites: Part A, 98, 25–31. https://doi.org/10.1016/j.compositesa.2017.03.012.
- [10] Boztoprak, Y., & Kartal, İ. (2019). Investigation of the mechanical properties of vinyl ester matrix composites reinforced with boron nitride particles. El-Cezeri Journal of Science and Engineering, 6(1), 43-50. https://doi.org/10.31202/ecjse.450790.
- [11] Göncü, Y., Onar, İ. C., & Ay, N. (2020). The effect of hexagonal boron nitride addition on presureless sintered alumina matrix composites. Journal of Boron, 5(1), 40–47. https://doi.org/10.30728/boron.633242.
- [12] Taşdelen, M. A., & Yılmaz, İ. N. (2018). Preparation of glass fiber doped polyamide 66/polythalamide mixtures. Uludag University Journal of Engineering Faculty, 23(1), 285-294. http://dx.doi.org/10.17482/Uumfd.350589.
- [13] Kaştan, A., Yalçın, Y., Ünal, H., & Talanut, Ş. (2015). Investigation of mechanical properties of PA 6 / YYPE / nanoclay composites. Afyon Kocatepe University Journal of Science and Engineering, 15(1), 9-20. http://hdl.handle.net/11630/4083.
- [14] Karslı, M. (2016). Selection of polymer composite material for light weapons (Publication No. 456251) [Master Thesis, Karadeniz Technical University]. Council of Higher Education.
- [15] Oz, M. (2016). Thermal behavior of hexagonal boron nitride in the open atmosphere. Cumhuriyet Science Journal, 37(1), 57-64. http://dx.doi.org/10.17776/csj.38616.
- [16] Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H., & Iemoto, Y. (2013). Thermal and mechanical properties of polypropylene/ boron nitride composites. Energy Procedia, 34, 808 – 817. https://doi.org/10.1016/j.egypro.2013.06.817.
- [17] Isarn, I., Ramis X., Ferrando, F., & Serra, A. (2018). Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices. Polymers, 10(3), 277-293. https://doi.org/10.3390/polym10030277.
- [18] Harrison, C., Weaver, S., Bertelsen, C., Burgett, E., Hertel, N., & Grulke, E. (2008). Polyethylene/boron nitride composites for space radiation shielding. Journal of Applied Polymer Science, 109, 2529–2538. https://doi.org/10.1002/app.27949.
- [19] Zhou, W., Zuo, J., Zhang, X., & Zhou, A. (2014). Thermal, electrical, and mechanical properties of hexagonal boron nitride–reinforced epoxy composites. Journal of Composite Materials, 48(20), 2517–2526. https://doi.org/10.1177/0021998313499953.
- [20] Madakbas, S.¸ Çakmakçı, E., & Kahraman, M.V. (2013). Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochimica Acta, 552, 1– 4. https://doi.org/10.1016/j.tca.2012.11.011.
- [21] Muratov, D. S., Stepashkin, A. A., Anshin, M. S., & Kuznetsov, V. D. (2018). Controlling thermal conductivity of high density polyethylene filled with modified hexagonal boron nitride (hBN). Journal of Alloys and Compounds, 735, 1200-1205. https://doi.org/10.1016/j.jallcom.2017.11.234.
- [22] Wang, E., Jiao, Z., Chen, Y., Hou, X., Fu, L., Wu, Y., … & Yu, J. (2018). Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Composites Part A, 109, 321–329. https://doi.org/10.1016/j.compositesa.2018.03.023.
- [23] Pan, C., Kou, K., Zhang, Y., Li, Z., Wu, G. (2018). Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Composites Part B, 153, 1–8. https://doi.org/10.1016/j.compositesb.2018.07.019.
- [24] Bilisik, K., Karaduman, N.S., Sapanci E. (2019). Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites. Journal of Composite Materials, 53(5), 563-577. https://doi:10.1177/0021998318787861.
- [25] Autay, R., Missaoui, S., Mars, J., Dammak, F. (2019). Mechanical and tribological study of short glass fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587-596. https://doi:10.1177/0967391119853956.
- [26] Mortazavi, B., Cuniberti, G. (2014). Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 4(37), 19137-43. https://doi.org/10.1039/C4RA01103A.
- [27] Fang, H., Li, G., Wang, K., Wu, F. (2023). Significant improvement of thermal conductivity of polyamide 6/boron nitride composites by adding a small amount of stearic acid. Polymers, 15, 1887, 1-12. https://doi.org/10.3390/polym15081887.
Altıgen bor nitrür entegreli termoplastik kompozitlerin eğilme özelliklerinin incelenmesi
Yıl 2024,
, 69 - 75, 28.06.2024
Özgür Demircan
,
Adnan Kalaycı
Öz
Bu çalışmada, termoplastik kompozit malzemeleri üretmek için ağırlık yüzdeleri (wps) %0, %0,5, %2 hegzagonal bor nitrürler (hBN), ağırlıkça %30 kısa cam elyaf takviyeli Poliamid (PA) 66 matrisine (GF30) eklenmiştir. . hBN katkı maddeleri, ağırlıkça %30 kısa cam elyaf takviyeli PA 66 (GF30) malzemelerden oluşan granüllerin kaplanmasıyla uygulandı. hBN kaplı termoplastik malzemeler plastik enjeksiyon yöntemiyle üretildi. Üretilen numunelerde hBN'lerin farklı wps'lerinin termoplastik kompozitlerin bükülme özellikleri üzerindeki etkisi incelenmiştir.
Üretilen numuneler üç nokta eğilme testine tabi tutuldu. Üç nokta eğme testi sonuçlarına bakıldığında eğilme özelliklerinde en yüksek artış PA66/GF30/%2 hBN katkılı termoplastik kompozit örneğinde elde edildi. Ağırlıkça %2 hBN'ye sahip numuneler, hBN içermeyen numunelere (PA66/GF30) kıyasla %85 ve %52'lik bir bükülme modülü ve mukavemet artışıyla en iyi bükülme özelliklerini gösterdi. Bu çalışmanın sonucuna göre, hBN ağırlık içeriğinin yüzdesi arttıkça eğilme mukavemetleri ve eğilme modülü önemli ölçüde arttı. hBN kaplı termoplastik kompozit numunelerin optimum hBN oranlarında bükülme özelliklerinde yüksek iyileşmeler gösterdiği sonucuna varıldı.
Proje Numarası
2019-30-06-30-003, PYO.TIP.1908.20.001 , PYO.MUH.1901.18.008
Kaynakça
- [1] Do, N. B. D., Imenes, K., Aasmundtveit, K. E., Nguyen, H. V., & Andreassen, E. (2023). Thermal conductivity and mechanical properties of polymer composites with hexagonal boron nitride—A comparison of three processing methods: Injection moulding, powder bed fusion and casting. Polymers, 15(6), 1552. https://doi.org/10.3390/polym15061552.
- [2] Vikram, K., Pramanik, S., & Bhaumik, S. (2023). Effect of hexagonal boron nitride on structural, mechanical, and tribological behavior of polyamide 6/glass fibers (5 wt%) hybrid nanocomposites. Iran Polymer Journal, 33, 551-530. https://doi.org/10.1007/s13726-023-01261-x.
- [3] Travas, L., Rujnic H. M., & Pilipovic A. (2023). Optimization of thermal conductivity and tensile properties of high-density polyethylene by addition of expanded graphite and boron nitride. Polymers, 15(17), 3645. https://doi.org/10.3390/polym15173645.
- [4] You, J., Choi, H. H, Lee, Y. M., Cho, J., Park, M., Lee, S. S., & Park, J. H. (2019). Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties, Composites Part B: Engineering, 164, 710-719. https://doi.org/10.1016/j.compositesb.2019.01.100.
- [5] Gülteki̇n, K., & Korkmaz, Y. (2022). The effect of boron nanoparticle reinforcement on the structural and mechanical performance of nanocomposites and bonded joints exposed to an acid environment, International Journal of Adhesion and Adhesives, 118, 103244, https://doi.org/10.1016/j.ijadhadh.2022.103244.
- [6] Ashrafi, B., Jakubinek, M. B., Martinez-Rubi, Y., Rahmat, M., Djokic, D., Laquas, K., Park D., Kim, K., Simard, B., & Yousefpour, A. (2017). Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes. Acta Astronautica, 141, 57–63. https://doi.org/10.1016/j.actaastro.2017.09.023.
- [7] Ayrilmis, N., Dundar, T., Kaymakci, A., Ozdemir, F., & Kwon, J.H. (2014). Mechanical and thermal properties of wood-plastic composites reinforced with hexagonal boron nitride. Polymer Composites, 35, 194– 200. https://doi.org/10.1002/pc.22650.
- [8] Cai, W., Mu, X., Pan, Y., Guo, W., Wang, J., Yuan, B., Feng, X., Tai, Q., & Hu, Y. (2018). Facile fabrication of organically modified boron nitride nanosheets and its effect on the thermal stability, flame retardant, and mechanical properties of thermoplastic polyurethane. Polymers for Advanced Technologies, 29, 2545–2552. https://doi.org/10.1002/pat.4366.
- [9] Yu, C., Zhang, J., Li, Z., Tian, W., Wang, L., Luo, J., Li, O., Fan, X., & Yao, Y. (2017). Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites: Part A, 98, 25–31. https://doi.org/10.1016/j.compositesa.2017.03.012.
- [10] Boztoprak, Y., & Kartal, İ. (2019). Investigation of the mechanical properties of vinyl ester matrix composites reinforced with boron nitride particles. El-Cezeri Journal of Science and Engineering, 6(1), 43-50. https://doi.org/10.31202/ecjse.450790.
- [11] Göncü, Y., Onar, İ. C., & Ay, N. (2020). The effect of hexagonal boron nitride addition on presureless sintered alumina matrix composites. Journal of Boron, 5(1), 40–47. https://doi.org/10.30728/boron.633242.
- [12] Taşdelen, M. A., & Yılmaz, İ. N. (2018). Preparation of glass fiber doped polyamide 66/polythalamide mixtures. Uludag University Journal of Engineering Faculty, 23(1), 285-294. http://dx.doi.org/10.17482/Uumfd.350589.
- [13] Kaştan, A., Yalçın, Y., Ünal, H., & Talanut, Ş. (2015). Investigation of mechanical properties of PA 6 / YYPE / nanoclay composites. Afyon Kocatepe University Journal of Science and Engineering, 15(1), 9-20. http://hdl.handle.net/11630/4083.
- [14] Karslı, M. (2016). Selection of polymer composite material for light weapons (Publication No. 456251) [Master Thesis, Karadeniz Technical University]. Council of Higher Education.
- [15] Oz, M. (2016). Thermal behavior of hexagonal boron nitride in the open atmosphere. Cumhuriyet Science Journal, 37(1), 57-64. http://dx.doi.org/10.17776/csj.38616.
- [16] Cheewawuttipong, W., Fuoka, D., Tanoue, S., Uematsu, H., & Iemoto, Y. (2013). Thermal and mechanical properties of polypropylene/ boron nitride composites. Energy Procedia, 34, 808 – 817. https://doi.org/10.1016/j.egypro.2013.06.817.
- [17] Isarn, I., Ramis X., Ferrando, F., & Serra, A. (2018). Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices. Polymers, 10(3), 277-293. https://doi.org/10.3390/polym10030277.
- [18] Harrison, C., Weaver, S., Bertelsen, C., Burgett, E., Hertel, N., & Grulke, E. (2008). Polyethylene/boron nitride composites for space radiation shielding. Journal of Applied Polymer Science, 109, 2529–2538. https://doi.org/10.1002/app.27949.
- [19] Zhou, W., Zuo, J., Zhang, X., & Zhou, A. (2014). Thermal, electrical, and mechanical properties of hexagonal boron nitride–reinforced epoxy composites. Journal of Composite Materials, 48(20), 2517–2526. https://doi.org/10.1177/0021998313499953.
- [20] Madakbas, S.¸ Çakmakçı, E., & Kahraman, M.V. (2013). Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochimica Acta, 552, 1– 4. https://doi.org/10.1016/j.tca.2012.11.011.
- [21] Muratov, D. S., Stepashkin, A. A., Anshin, M. S., & Kuznetsov, V. D. (2018). Controlling thermal conductivity of high density polyethylene filled with modified hexagonal boron nitride (hBN). Journal of Alloys and Compounds, 735, 1200-1205. https://doi.org/10.1016/j.jallcom.2017.11.234.
- [22] Wang, E., Jiao, Z., Chen, Y., Hou, X., Fu, L., Wu, Y., … & Yu, J. (2018). Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Composites Part A, 109, 321–329. https://doi.org/10.1016/j.compositesa.2018.03.023.
- [23] Pan, C., Kou, K., Zhang, Y., Li, Z., Wu, G. (2018). Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Composites Part B, 153, 1–8. https://doi.org/10.1016/j.compositesb.2018.07.019.
- [24] Bilisik, K., Karaduman, N.S., Sapanci E. (2019). Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites. Journal of Composite Materials, 53(5), 563-577. https://doi:10.1177/0021998318787861.
- [25] Autay, R., Missaoui, S., Mars, J., Dammak, F. (2019). Mechanical and tribological study of short glass fiber-reinforced PA 66. Polymers and Polymer Composites, 27(9), 587-596. https://doi:10.1177/0967391119853956.
- [26] Mortazavi, B., Cuniberti, G. (2014). Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 4(37), 19137-43. https://doi.org/10.1039/C4RA01103A.
- [27] Fang, H., Li, G., Wang, K., Wu, F. (2023). Significant improvement of thermal conductivity of polyamide 6/boron nitride composites by adding a small amount of stearic acid. Polymers, 15, 1887, 1-12. https://doi.org/10.3390/polym15081887.