Alzheimer ve Parkinson hastalıklarında bor içeren bileşiklerin nörokoruyucu etkisi
Yıl 2024,
, 42 - 51, 29.03.2024
Barış Bitmez
,
Beste Balbal
Öz
Bu derlemede bor içeren bileşiklerin nörodejenerasyon süreci üzerindeki etkileri anlatılmaktadır. Bor içeren bileşikler nöronlar üzerinde çeşitli koruyucu etkiler gösterirler. Son araştırmalar, bor takviyesinin nöronlarda antioksidan savunma mekanizmalarının artmasına yol açtığını, inflamasyonu baskıladığını ve oksidatif hasara karşı iyi bir koruma potansiyeli sergilediğini göstermiştir. Bu doğrultuda yazılan derleme makalesinde, bor içeren bileşiklerin nöro-koruyucu etkilerinin araştırıldığı çalışmalar incelendi ve bor içeren bileşiklerin nörodejeneratif hastalıkların tedavisinde spesifik hedeflere ilaç olarak uygulanmasına ilişkin daha ileri çalışmalara gerek olduğu tespit edildi.
Kaynakça
- [1] Küçükdoğru, R., Türkez, H., Arslan, M. E., Tozlu, Ö. Ö.,
Sönmez, E., Mardinoğlu, A., ... & Di Stefano, A. (2020).
Neuroprotective effects of boron nitride nanoparticles
in the experimental Parkinson’s disease model against
MPP+ induced apoptosis. Metabolic Brain Disease, 35,
947-957. https://doi.org/10.1007/s11011-020-00559-6.
- [2]. Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z.,
Kucukkurt, I., Demirel, H. H., ... & Zhu, K. (2018). The
ameliorative effects of boron against acrylamide-induced
oxidative stress, inflammatory response, and metabolic
changes in rats. Food and Chemical Toxicology, 118,
745-752. https://doi.org/10.1016/j.fct.2018.06.029.
- [3]. Turkez, H., Yıldırım, S., Sahin, E., Arslan, M. E., Emsen,
B., Tozlu, O. O., ... & Mardinoglu, A. (2022). Boron
compounds exhibit protective effects against aluminuminduced
neurotoxicity and genotoxicity: In vitro and in
vivo study. Toxics, 10(8), 428. https://doi.org/10.3390/
toxics10080428.
- [4]. Lu, C. J., Hu, J., Wang, Z., Xie, S., Pan, T., Huang, L., &
Li, X. (2018). Discovery of boron-containing compounds
as Aβ aggregation inhibitors and antioxidants for the
treatment of Alzheimer's disease. MedChemComm,
9(11), 1862-1870. https://doi.org/10.1039/C8MD00315G.
- [5]. Nielsen, F. H. (2014). Update on human health effects
of boron. Journal of Trace Elements in Medicine and
Biology, 28(4), 383-387. https://doi.org/10.1016/j.
jtemb.2014.06.023.
- [6]. Khaliq, H., Juming, Z., & Ke-Mei, P. (2018). The
physiological role of boron on health. Biological Trace
Element Research, 186, 31-51. https://doi.org/10.1007/
s12011-018-1284-3.
- [7]. Ozdemir, H. S., Yunusoglu, O., Sagmanligil, V., Yasar,
S., Colcimen, N., Goceroglu, R., & Catalkaya, E. (2022).
Investigation of the pharmacological, behavioral, and
biochemical effects of boron in parkinson-indicated rats.
Cellular and Molecular Biology, 68(8), 13-21. https://doi.
org/10.14715/cmb/2022.68.8.3.
- [8]. Ma, C., Hong, F., & Yang, S. (2022). Amyloidosis in
Alzheimer’s disease: Pathogeny, etiology, and related
therapeutic directions. Molecules, 27(4), 1210. https://
doi.org/10.3390/molecules27041210.
- [9]. Tahami Monfared, A. A., Byrnes, M. J., White, L. A., &
Zhang, Q. (2022). Alzheimer’s disease: Epidemiology
and clinical progression. Neurology and Therapy, 11(2),
553-569. https://doi.org/10.1007/s40120-022-00338-8.
- [10]. Hampel, H., Hardy, J., Blennow, K., Chen, C.,
Perry, G., Kim, S. H., ... & Vergallo, A. (2021). The
amyloid-β pathway in Alzheimer’s disease. Molecular
Psychiatry, 26(10), 5481-5503. https://doi.org/10.1038/
s41380-021-01249-0.
- [11]. Calabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C.
(2021). The biological pathways of Alzheimer disease:
A review. AIMS Neuroscience, 8(1), 86-132. https://doi.
org/10.3934/Neuroscience.2021005.
- [12]. Akkuş, R. Y., Bitmez, B., Gültekin, S. K., Albayrak,
İ. G., Özen F., Deveci, Y., ... & Arslan, B. A. (2022).
Neuroprotective effect of Hypericum perforatum extract
against aluminum-maltolate induced toxicity in SHSY5Y
cells. International Journal of Science Letters,
4(2), 277-291. https://doi.org/10.38058/ijsl.1121636.
- [13]. Peng, L., Bestard-Lorigados, I., & Song, W. (2022).
The synapse as a treatment avenue for Alzheimer’s
Disease. Molecular Psychiatry, 27(7), 2940-2949.
https://doi.org/10.1038/s41380-022-01565-z.
- [14]. Šimić, G., Španić, E., Horvat, L. L., & Hof, P. R.
(2019). Blood-brain barrier and innate immunity in
the pathogenesis of Alzheimer's disease. Progress in
Molecular Biology and Translational Science, 168, 99-
145. https://doi.org/10.1016/bs.pmbts.2019.06.003.
- [15]. Yuksel, M., & Tacal, O. (2019). Trafficking and proteolytic
processing of amyloid precursor protein and secretases
in Alzheimer's disease development: An up-to-date
review. European Journal of Pharmacology, 856,
172415. https://doi.org/10.1016/j.ejphar.2019.172415.
- [16]. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y.,
Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure,
biology and structure-based therapeutic development.
Acta Pharmacologica Sinica, 38(9), 1205-1235. https://
doi.org/10.1038/aps.2017.28.
- [17]. Liu, X., Liu, Y., & Ji, S. (2021). Secretases
related to amyloid precursor protein processing.
Membranes, 11(12), 983. https://doi.org/10.3390/
membranes11120983.
- [18]. Idda, M. L., Munk, R., Abdelmohsen, K., & Gorospe,M. (2018). Noncoding RNAs in Alzheimer's disease.
WIREs RNA, 9(2), e1463. https://doi.org/10.1002/
wrna.1463.
- [19]. Siddappaji, K. K., & Gopal, S. (2021). Molecular
mechanisms in Alzheimer's disease and the impact of
physical exercise with advancements in therapeutic
approaches. AIMS Neuroscience, 8(3), 357-389.
https://doi.org/10.3934/Neuroscience.2021020.
- [20]. Bahk, Y. Y., Mohamed, B., & Kim, Y. J. (2013).
Biomedical application of phosphoproteomics in
neurodegenerative diseases. Journal of Microbiology
and Biotechnology, 23(3), 279-288. https://doi.
org/10.4014/jmb.1301.01027.
- [21]. Wu, Y., & Eisel, U. L. M. (2023). Microglia-Astrocyte
Communication in Alzheimer’s Disease. Journal of
Alzheimer's Disease, 95(3), 785-803. https://doi.
org/10.3233/JAD-230199.
- [22]. Sharma, K., Pradhan, S., Duffy, L. K., Yeasmin, S.,
Bhattarai, N., & Schulte, M. K. (2021). Role of receptors
in relation to plaques and tangles in Alzheimer’s disease
pathology. International Journal of Molecular Sciences,
22(23), 12987. https://doi.org/10.3390/ijms222312987.
- [23]. Kumari, S., Dhapola, R., & Reddy, D. H. (2023).
Apoptosis in Alzheimer’s disease: Insight into the
signaling pathways and therapeutic avenues. Apoptosis,
1-15. https://doi.org/10.1007/s10495-023-01848-y.
- [24]. Brunello, C. A., Merezhko, M., Uronen, R. L., &
Huttunen, H. J. (2020). Mechanisms of secretion and
spreading of pathological tau protein. Cellular and
Molecular Life Sciences, 77, 1721-1744. https://doi.
org/10.1007/s00018-019-03349-1.
- [25]. Narayanan, S. E., Rehuman, N. A., Harilal, S.,
Vincent, A., Rajamma, R. G., Behl, T., ... & Mathew,
B. (2020). Molecular mechanism of zinc neurotoxicity
in Alzheimer’s disease. Environmental Science and
Pollution Research, 27, 43542-43552. https://doi.
org/10.1007/s11356-020-10477-w.
- [26]. Rawat, P., Sehar, U., Bisht, J., Selman, A., Culberson,
J., & Reddy, P. H. (2022). Phosphorylated tau in
Alzheimer’s disease and other tauopathies. International
Journal of Molecular Sciences, 23(21), 12841. https://
doi.org/10.3390/ijms232112841.
- [27]. Muralidar, S., Ambi, S. V., Sekaran, S., Thirumalai, D., &
Palaniappan, B. (2020). Role of tau protein in Alzheimer's
disease: The prime pathological player. International
Journal of Biological Macromolecules, 163, 1599-1617.
https://doi.org/10.1016/j.ijbiomac.2020.07.327.
- [28]. Al Mamun, A., Uddin, M. S., Mathew, B., & Ashraf, G. M.
(2020). Toxic tau: Structural origins of tau aggregation
in Alzheimer's disease. Neural Regeneration Research,
15(8), 1417. https://doi.org/10.4103/1673-5374.274329.
- [29]. Mineur, Y. S., & Picciotto, M. R. (2021). The role of
acetylcholine in negative encoding bias: Too much of a
good thing?. European Journal of Neuroscience, 53(1),
114-125. https://doi.org/10.1111/ejn.14641.
- [30]. Pepeu, G., & Giovannini, M. G. (2017). The fate of
the brain cholinergic neurons in neurodegenerative
diseases. Brain Research, 1670, 173-184. https://doi.
org/10.1016/j.brainres.2017.06.023.
- [31]. Majdi, A., Sadigh-Eteghad, S., Rahigh Aghsan, S.,
Farajdokht, F., Vatandoust, S. M., Namvaran, A., &
Mahmoudi, J. (2020). Amyloid-β, tau, and the cholinergic
system in Alzheimer’s disease: Seeking direction in a
tangle of clues. Reviews in the Neurosciences, 31(4),
391-413. https://doi.org/10.1515/revneuro-2019-0089.
- [32]. Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F.
(2022). Role of cholinergic signaling in Alzheimer’s
disease. Molecules, 27(6), 1816. https://doi.
org/10.3390/molecules27061816.
- [33]. Liu, Y., Nguyen, M., Robert, A., & Meunier, B. (2019).
Metal ions in Alzheimer’s disease: A key role or not?.
Accounts of Chemical Research, 52(7), 2026-2035.
https://doi.org/10.1002/brb3.252.
- [34]. Li, Z., Liu, Y., Wei, R., Yong, V. W., & Xue, M. (2022).
The important role of zinc in neurological diseases.
Biomolecules, 13(1), 28. https://doi.org/10.3390/
biom13010028.
- [35]. Huat, T. J., Camats-Perna, J., Newcombe, E. A., Valmas,
N., Kitazawa, M., & Medeiros, R. (2019). Metal toxicity
links to Alzheimer's disease and neuroinflammation.
Journal of Molecular Biology, 431(9), 1843-1868.
https://doi.org/10.1016/j.jmb.2019.01.018.
- [36]. Balachandran, R. C., Mukhopadhyay, S., McBride, D.,
Veevers, J., Harrison, F. E., Aschner, M., ... & Bowman,
A. B. (2020). Brain manganese and the balance
between essential roles and neurotoxicity. Journal of
Biological Chemistry, 295(19), 6312-6329. https://doi.
org/10.1074/jbc.REV119.009453.
- [37]. Martins Jr, A. C., Gubert, P., Villas Boas, G. R., Meirelles
Paes, M., Santamaría, A., Lee, E., ... & Aschner,
M. (2020). Manganese-induced neurodegenerative
diseases and possible therapeutic approaches. Expert
Review of Neurotherapeutics, 20(11), 1109-1121.
https://doi.org/10.1080/14737175.2020.1807330.
- [38]. Mezzaroba, L., Alfieri, D. F., Simão, A. N. C., &
Reiche, E. M. V. (2019). The role of zinc, copper,
manganese and iron in neurodegenerative diseases.
Neurotoxicology, 74, 230-241. https://doi.org/10.1016/j.
neuro.2019.07.007.
- [39]. Viktorinova, A., & Durfinova, M. (2021). Mini-
Review: Is iron-mediated cell death (ferroptosis) an
identical factor contributing to the pathogenesis of
some neurodegenerative diseases?. Neuroscience
Letters, 745, 135627. https://doi.org/10.1016/j.
neulet.2021.135627.
- [40]. Kajarabille, N., & Latunde-Dada, G. O. (2019).
Programmed cell-death by ferroptosis: Antioxidants as
mitigators. International Journal of Molecular Sciences,
20(19), 4968. https://doi.org/10.3390/ijms20194968.
- [41]. Gong, N. J., Dibb, R., Bulk, M., van der Weerd, L., & Liu,
C. (2019). Imaging beta amyloid aggregation and iron
accumulation in Alzheimer's disease using quantitative
susceptibility mapping MRI. Neuroimage, 191, 176-185.
https://doi.org/10.1016/j.neuroimage.2019.02.019.
- [42]. Eriksen, J. L., Wszolek, Z., & Petrucelli, L. (2005).
Molecular pathogenesis of Parkinson disease. Archives
of Neurology, 62(3), 353-357. https://doi.org/10.1001/
archneur.62.3.353.
- [43]. Bitmez, B., Gultekin, S. K., Albayrak, I. G., Deveci, Y.,
Sicak, Y., Akalin, E., ... & Arslan, B. A. (2023). Effects of
Hypericum perforatum extract on 6-hydroxydopamine
neurotoxicity in differentiated SH-SY5Y cells. Egyptian
Pharmaceutical Journal, 22(2), 188-191. https://doi.
org/10.4103/epj.epj_180_22.
- [44]. Lee, A., & Gilbert, R. M. (2016). Epidemiology of
Parkinson disease. Neurologic Clinics, 34(4), 955-965.
https://doi.org/10.1016/j.ncl.2016.06.012.
- [45]. Durmus, H., Gokalp, M. A., & Hanagasi, H. A. (2015).
Prevalence of Parkinson’s disease in Baskale, Turkey:
A population based study. Neurological sciences, 36(3),
411-413. https://doi.org/10.1007/s10072-014-1988-x.
- [46]. Olgun, H., Zayimoğlu, E., & Cankaya, S. (2018).
Incidence of sarcopenia and dynapenia according to
stage in patients with idiopathic Parkinson’s disease.
Neurological Sciences, 39(8), 1415-1421. https://doi.
org/10.1007/s10072-018-3439-6.
- [47]. Siddique, Y. H. (2022). Drosophila: A Model to study
the pathogenesis of Parkinson’s disease. CNS &
Neurological Disorders-Drug Targets, 21(3), 259-277.
https://doi.org/10.2174/1871527320666210809120621.
- [48]. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M.,
Brundin, P., Volkmann, J., ... & Lang, A. E. (2017).
Parkinson disease. Nature Reviews Disease Primers,
3(1), 1-21. https://doi.org/10.1038/nrdp.2017.13.
- [49]. Picca, A., Calvani, R., Coelho-Junior, H. J., Landi,
F., Bernabei, R., & Marzetti, E. (2020). Mitochondrial
dysfunction, oxidative stress, and neuroinflammation:
Intertwined roads to neurodegeneration. Antioxidants,
9(8), 647. https://doi.org/10.3390/antiox9080647.
- [50]. Bose, A., & Beal, M. F. (2016). Mitochondrial dysfunction
in Parkinson's disease. Journal of Neurochemistry,
139, 216-231. https://doi.org/10.1111/jnc.13731.
- [51]. Kim, T. Y., Leem, E., Lee, J. M., & Kim, S. R. (2020).
Control of reactive oxygen species for the prevention
of parkinson’s disease: The possible application
of flavonoids. Antioxidants, 9(7), 583. https://doi.
org/10.3390/antiox9070583.
- [52]. Sheridan, C., Delivani, P., Cullen, S. P., & Martin, S.
J. (2008). Bax- or Bak-induced mitochondrial fission
can be uncoupled from cytochrome C release.
Molecular Cell, 31, 570-585. https://doi.org/10.1016/j.
molcel.2008.08.002.
- [53]. Villalpando-Rodriguez, G. E., & Gibson, S. B. (2021).
Reactive oxygen species (ROS) regulates different
types of cell death by acting as a rheostat. Oxidative
Medicine and Cellular Longevity, 2021, 9912436.
https://doi.org/10.1155/2021/9912436.
- [54]. Erekat, N. S. (2022). Apoptosis and its therapeutic
implications in neurodegenerative diseases. Clinical
Anatomy, 35(1), 65-78. https://doi.org/10.1002/
ca.23792.
- [55]. Dionísio, P. A., Amaral, J. D., & Rodrigues, C. M. P.
(2021). Oxidative stress and regulated cell death in
Parkinson’s disease. Ageing Research Reviews, 67,
101263. https://doi.org/10.1016/j.arr.2021.101263.
- [56]. Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M.,
Minami, A., & Matsuda, S. (2017). PINK1 signaling in
mitochondrial homeostasis and in aging. International
Journal of Molecular Medicine, 39(1), 3-8. https://doi.
org/10.3892/ijmm.2016.2827.
- [57]. Dawson, T. M., & Dawson, V. L. (2018). Excitotoxic
programmed cell death involves caspase-independent
mechanisms. Acute Neuronal Injury (pp. 3-17). Springer,
Cham. https://doi.org/10.1007/978-3-319-77495-4_1.
- [58]. Behl, T., Kumar, S., Althafar, Z. M., Sehgal, A., Singh,
S., Sharma, N., ... & Bungau, S. (2022). Exploring the
role of ubiquitin–proteasome system in Parkinson's
disease. Molecular Neurobiology, 59(7), 4257-4273.
https://doi.org/10.1007/s12035-022-02851-1.
- [59]. Moon, H. E., & Paek, S. H. (2015). Mitochondrial
dysfunction in Parkinson's disease. Experimental
Neurobiology, 24(2), 103. https://doi.org/10.5607/
en.2015.24.2.103
- [60]. More, S. V., Kumar, H., Kim, I. S., Song, S. Y., & Choi,
D. K. (2013). Cellular and molecular mediators of
neuroinflammation in the pathogenesis of Parkinson’s
disease. Mediators of Inflammation, 2013, 952375.
https://doi.org/10.1155/2013/952375.
- [61]. Weiss, F., Labrador-Garrido, A., Dzamko, N., & Halliday,
G. (2022). Immune responses in the Parkinson's
disease brain. Neurobiology of Disease, 168, 105700.
https://doi.org/10.1016/j.nbd.2022.105700.
- [62]. Isik, S., Yeman Kiyak, B., Akbayir, R., Seyhali, R., &
Arpaci, T. (2023). Microglia mediated neuroinflammation
in Parkinson’s disease. Cells, 12(7), 1012. https://doi.
org/10.3390/cells12071012.
- [63]. Simon, D. K., Tanner, C. M., & Brundin, P. (2020).
Parkinson disease epidemiology, pathology, genetics,
and pathophysiology. Clinics in Geriatric Medicine,
36(1), 1-12. https://doi.org/10.1016/j.cger.2019.08.002.
- [64]. Deng, H., Wang, P., & Jankovic, J. (2018). The genetics
of Parkinson disease. Ageing Research Reviews, 42,
72-85. https://doi.org/10.1016/j.arr.2017.12.007.
- [65]. Turkez, H., Yıldırım, S., Sahin, E., Arslan, M. E.,
Emsen, B., Tozlu, O. O., ... & Mardinoglu, A. (2022).
Boron compounds exhibit protective effects against
aluminum-induced neurotoxicity and genotoxicity: In
vitro and in vivo study. Toxics, 10(8), 428. https://doi.
org/10.3390/toxics10080428.
- [66]. Kar, F, Hacıoğlu, C., Özkoç, M., Üstünışık, N., Bütün, A.,
Sema, U., & Kanbak, G. (2018). The new perspective
neuroprotective effect of boric acid against ethanolinduced
oxidative damage on synaptosome. Journal of
Applied Biological Sciences, 12(2), 28-33.
- [67]. Ataizi, Z. S., Ozkoc, M., Kanbak, G., Karimkhani, H.,
Donmez, D. B., Ustunisik, N., & Ozturk, B. (2021).
Evaluation of the neuroprotective role of boric acid in
preventing traumatic brain injury-mediated oxidative
stress. Turkish Neurosurgery, 31(4), 25692-18. https://
doi.org/10.5137/1019-5149.JTN.25692-18.5.
- [68]. İlhan, A. O., Can, B., Kar, F., Gündoğdu, A. Ç., Söğüt,
İ., & Kanbak, G. (2023). An investigation into the
protective effects of various doses of boric acid on liver,
kidney, and brain tissue damage caused by high levelsof acute alcohol consumption. Biological Trace Element
Research, 201, 5346–5357. https://doi.org/10.1007/
s12011-023-03699-9.
- [69]. Alak, G., Ucar, A., Yeltekin, A. Ç., Çomaklı, S., Parlak,
V., Taş, I. H., ... & Türkez, H. (2018). Neuroprotective
effects of dietary borax in the brain tissue of rainbow trout
(Oncorhynchus mykiss) exposed to copper-induced
toxicity. Fish Physiology and Biochemistry, 44, 1409-
1420. https://doi.org/10.1007/s10695-018-0530-0.
- [70]. Coban, F. K., Ince, S., Kucukkurt, I., Demirel, H. H.,
& Hazman, O. (2015). Boron attenuates malathioninduced
oxidative stress and acetylcholinesterase
inhibition in rats. Drug and Chemical Toxicology, 38(4),
391-399. https://doi.org/10.3109/01480545.2014.9741
09.
- [71]. Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z.,
Demirel, H. H., Kucukkurt, I., ... & Zhu, K. (2019).
Bisphenol-A induced oxidative stress, inflammatory
gene expression, and metabolic and histopathological
changes in male Wistar albino rats: Protective role of
boron. Toxicology Research, 8(2), 262-269. https://doi.
org/10.1039/c8tx00312b.
- [72]. Ince, S., Kucukkurt, I., Acaroz, U., Arslan-Acaroz,
D., & Varol, N. (2019). Boron ameliorates arsenicinduced
DNA damage, proinflammatory cytokine
gene expressions, oxidant/antioxidant status, and
biochemical parameters in rats. Journal of Biochemical
and Molecular Toxicology, 33(2), e22252. https://doi.
org/10.1002/jbt.22252.
- [73]. Sahin, N., Akdemir, F., Orhan, C., Aslan, A., Agca,
C. A., Gencoglu, H., ... & Sahin, K. (2012). A novel
nutritional supplement containing chromium picolinate,
phosphatidylserine, docosahexaenoic acid, and boron
activates the antioxidant pathway Nrf2/HO-1 and
protects the brain against oxidative stress in high-fatfed
rats. Nutritional Neuroscience, 15(5), 42-47. https://
doi.org/10.1179/1476830512Y.0000000018.
- [74]. Orhan, C., Şahin, N., Tuzcu, Z., Komorowski, J. R., &
Şahin, K. (2017). Combined oral supplementation of
chromium picolinate, docosahexaenoic acid, and boron
enhances neuroprotection in rats fed a high-fat diet.
Turkish Journal of Medical Sciences, 47(5), 1616-1625.
https://doi.org/ 10.3906/sag-1701-54.
- [75]. Hacioglu, C., Kar, F., Kar, E., Kara, Y., & Kanbak, G.
(2021). Effects of curcumin and boric acid against
neurodegenerative damage induced by amyloid beta
(1-42). Biological Trace Element Research, 199, 3793-
3800. https://doi.org/10.1007/s12011-020-02511-2.
- [76]. Özdemir, Ç., Arslan, M., Küçük, A., Yığman, Z., &
Dursun, A. D. (2023). Therapeutic efficacy of boric acid
treatment on brain tissue and cognitive functions in rats
with experimental Alzheimer’s disease. Drug Design,
Development and Therapy, 1453-1462. https://doi.
org/10.2147/DDDT.S405963.
- [77]. Yildirim, C., Yar Saglam, A. S., Guney, S., Turan, B.,
Ebegil, M., Coskun Cevher, S., & Balabanli, B. (2023).
Investigation covering the effect of boron plus taurine
application on protein carbonyl and advanced oxidation
protein products levels in experimental Alzheimer model.
Biological Trace Element Research, 201(4), 1905-1912.
https://doi.org/ 10.1007/s12011-022-03293-5.
- [78]. Hu, W. Y., He, Z. Y., Yang, L. J., Zhang, M., Xing, D., &
Xiao, Z. C. (2015). The Ca 2+ channel inhibitor 2-APB
reverses β-amyloid-induced LTP deficit in hippocampus
by blocking Bax and caspase-3 hyperactivation. British
Journal of Pharmacology, 172(9), 2273-2285. https://
doi.org/10.1111/bph.13048.
- [79]. Abad-García, A., Ocampo-Néstor, A. L., Das, B. C.,
Farfán-García, E. D., Bello, M., Trujillo-Ferrara, J.
G., & Soriano-Ursúa, M. A. (2022). Interactions of a
boron-containing levodopa derivative on D 2 dopamine
receptor and its effects in a Parkinson disease model.
JBIC Journal of Biological Inorganic Chemistry, 1-11.
https://doi.org/10.1007/s00775-021-01915-2.
- [80]. Yavuz, E., Çevik, G., Çevreli, B., & Kaşıkçı, E. S. (2023).
Effect of boric acid and quercetin combination on
oxidative stress/cognitive function in parkinson model.
Journal of Boron, 8(3), 85-91. https://doi.org/10.30728/
boron.1215949.
- [81]. Üstündağ, F. D., Ünal, İ., Üstündağ, Ü. V., Cansız, D.,
Beler, M., Karagöz, A., ... & Emekli-Alturfan, E. (2022).
3-Pyridinylboronic acid ameliorates rotenone-induced
oxidative stress through Nrf2 target genes in zebrafish
embryos. Neurochemical Research, 47(6), 1553-1564.
https://doi.org/10.1007/s11064-022-03548-6.
- [82]. Vaidya, B., Kaur, H., Thapak, P., Sharma, S. S., & Singh,
J. N. (2022). Pharmacological modulation of TRPM2
channels via PARP pathway leads to neuroprotection in
MPTP-induced Parkinson’s disease in Sprague dawley
rats. Molecular Neurobiology, 59(3), 1528-1542. https://
doi.org/10.1007/s12035-021-02711-4.
- [83]. Smida, K., Albedah, M. A., Rashid, R. F., & Al-Qawasmi,
A. R. (2023). Molecular dynamics method for targeting
α-synuclein aggregation induced Parkinson's disease
using boron nitride nanostructures. Engineering
Analysis with Boundary Elements, 146, 89-95. https://
doi.org/10.1016/j.enganabound.2022.10.016.
- [84]. Barrón-González, M., Montes-Aparicio, A. V., Cuevas-
Galindo, M. E., Orozco-Suárez, S., Barrientos, R.,
Alatorre, A., ... & Soriano-Ursúa, M. A. (2023). Boroncontaining
compounds on neurons: Actions and potential
applications for treating neurodegenerative diseases.
Journal of Inorganic Biochemistry, 238, 112027. https://
doi.org/10.1016/j.jinorgbio.2022.112027.
Neuroprotective Effect of Boron-Containing Compounds on Alzheimer's and Parkinson's Diseases
Yıl 2024,
, 42 - 51, 29.03.2024
Barış Bitmez
,
Beste Balbal
Öz
This review describes the effects of boron-containing compounds on the neurodegeneration process. Boron-containing compounds show various protective effects on neurons. Recent studies have shown that boron supplementation leads to increased antioxidant defense mechanisms in neurons, suppressing inflammation and exhibiting the potential to protect against oxidative damage. In this review article, studies investigating the neuroprotective effects of boron-containing compounds were examined and it was determined that further studies were needed on the application of boron-containing compounds as drugs to specific targets in the treatment of neurodegenerative diseases.
Kaynakça
- [1] Küçükdoğru, R., Türkez, H., Arslan, M. E., Tozlu, Ö. Ö.,
Sönmez, E., Mardinoğlu, A., ... & Di Stefano, A. (2020).
Neuroprotective effects of boron nitride nanoparticles
in the experimental Parkinson’s disease model against
MPP+ induced apoptosis. Metabolic Brain Disease, 35,
947-957. https://doi.org/10.1007/s11011-020-00559-6.
- [2]. Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z.,
Kucukkurt, I., Demirel, H. H., ... & Zhu, K. (2018). The
ameliorative effects of boron against acrylamide-induced
oxidative stress, inflammatory response, and metabolic
changes in rats. Food and Chemical Toxicology, 118,
745-752. https://doi.org/10.1016/j.fct.2018.06.029.
- [3]. Turkez, H., Yıldırım, S., Sahin, E., Arslan, M. E., Emsen,
B., Tozlu, O. O., ... & Mardinoglu, A. (2022). Boron
compounds exhibit protective effects against aluminuminduced
neurotoxicity and genotoxicity: In vitro and in
vivo study. Toxics, 10(8), 428. https://doi.org/10.3390/
toxics10080428.
- [4]. Lu, C. J., Hu, J., Wang, Z., Xie, S., Pan, T., Huang, L., &
Li, X. (2018). Discovery of boron-containing compounds
as Aβ aggregation inhibitors and antioxidants for the
treatment of Alzheimer's disease. MedChemComm,
9(11), 1862-1870. https://doi.org/10.1039/C8MD00315G.
- [5]. Nielsen, F. H. (2014). Update on human health effects
of boron. Journal of Trace Elements in Medicine and
Biology, 28(4), 383-387. https://doi.org/10.1016/j.
jtemb.2014.06.023.
- [6]. Khaliq, H., Juming, Z., & Ke-Mei, P. (2018). The
physiological role of boron on health. Biological Trace
Element Research, 186, 31-51. https://doi.org/10.1007/
s12011-018-1284-3.
- [7]. Ozdemir, H. S., Yunusoglu, O., Sagmanligil, V., Yasar,
S., Colcimen, N., Goceroglu, R., & Catalkaya, E. (2022).
Investigation of the pharmacological, behavioral, and
biochemical effects of boron in parkinson-indicated rats.
Cellular and Molecular Biology, 68(8), 13-21. https://doi.
org/10.14715/cmb/2022.68.8.3.
- [8]. Ma, C., Hong, F., & Yang, S. (2022). Amyloidosis in
Alzheimer’s disease: Pathogeny, etiology, and related
therapeutic directions. Molecules, 27(4), 1210. https://
doi.org/10.3390/molecules27041210.
- [9]. Tahami Monfared, A. A., Byrnes, M. J., White, L. A., &
Zhang, Q. (2022). Alzheimer’s disease: Epidemiology
and clinical progression. Neurology and Therapy, 11(2),
553-569. https://doi.org/10.1007/s40120-022-00338-8.
- [10]. Hampel, H., Hardy, J., Blennow, K., Chen, C.,
Perry, G., Kim, S. H., ... & Vergallo, A. (2021). The
amyloid-β pathway in Alzheimer’s disease. Molecular
Psychiatry, 26(10), 5481-5503. https://doi.org/10.1038/
s41380-021-01249-0.
- [11]. Calabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C.
(2021). The biological pathways of Alzheimer disease:
A review. AIMS Neuroscience, 8(1), 86-132. https://doi.
org/10.3934/Neuroscience.2021005.
- [12]. Akkuş, R. Y., Bitmez, B., Gültekin, S. K., Albayrak,
İ. G., Özen F., Deveci, Y., ... & Arslan, B. A. (2022).
Neuroprotective effect of Hypericum perforatum extract
against aluminum-maltolate induced toxicity in SHSY5Y
cells. International Journal of Science Letters,
4(2), 277-291. https://doi.org/10.38058/ijsl.1121636.
- [13]. Peng, L., Bestard-Lorigados, I., & Song, W. (2022).
The synapse as a treatment avenue for Alzheimer’s
Disease. Molecular Psychiatry, 27(7), 2940-2949.
https://doi.org/10.1038/s41380-022-01565-z.
- [14]. Šimić, G., Španić, E., Horvat, L. L., & Hof, P. R.
(2019). Blood-brain barrier and innate immunity in
the pathogenesis of Alzheimer's disease. Progress in
Molecular Biology and Translational Science, 168, 99-
145. https://doi.org/10.1016/bs.pmbts.2019.06.003.
- [15]. Yuksel, M., & Tacal, O. (2019). Trafficking and proteolytic
processing of amyloid precursor protein and secretases
in Alzheimer's disease development: An up-to-date
review. European Journal of Pharmacology, 856,
172415. https://doi.org/10.1016/j.ejphar.2019.172415.
- [16]. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y.,
Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure,
biology and structure-based therapeutic development.
Acta Pharmacologica Sinica, 38(9), 1205-1235. https://
doi.org/10.1038/aps.2017.28.
- [17]. Liu, X., Liu, Y., & Ji, S. (2021). Secretases
related to amyloid precursor protein processing.
Membranes, 11(12), 983. https://doi.org/10.3390/
membranes11120983.
- [18]. Idda, M. L., Munk, R., Abdelmohsen, K., & Gorospe,M. (2018). Noncoding RNAs in Alzheimer's disease.
WIREs RNA, 9(2), e1463. https://doi.org/10.1002/
wrna.1463.
- [19]. Siddappaji, K. K., & Gopal, S. (2021). Molecular
mechanisms in Alzheimer's disease and the impact of
physical exercise with advancements in therapeutic
approaches. AIMS Neuroscience, 8(3), 357-389.
https://doi.org/10.3934/Neuroscience.2021020.
- [20]. Bahk, Y. Y., Mohamed, B., & Kim, Y. J. (2013).
Biomedical application of phosphoproteomics in
neurodegenerative diseases. Journal of Microbiology
and Biotechnology, 23(3), 279-288. https://doi.
org/10.4014/jmb.1301.01027.
- [21]. Wu, Y., & Eisel, U. L. M. (2023). Microglia-Astrocyte
Communication in Alzheimer’s Disease. Journal of
Alzheimer's Disease, 95(3), 785-803. https://doi.
org/10.3233/JAD-230199.
- [22]. Sharma, K., Pradhan, S., Duffy, L. K., Yeasmin, S.,
Bhattarai, N., & Schulte, M. K. (2021). Role of receptors
in relation to plaques and tangles in Alzheimer’s disease
pathology. International Journal of Molecular Sciences,
22(23), 12987. https://doi.org/10.3390/ijms222312987.
- [23]. Kumari, S., Dhapola, R., & Reddy, D. H. (2023).
Apoptosis in Alzheimer’s disease: Insight into the
signaling pathways and therapeutic avenues. Apoptosis,
1-15. https://doi.org/10.1007/s10495-023-01848-y.
- [24]. Brunello, C. A., Merezhko, M., Uronen, R. L., &
Huttunen, H. J. (2020). Mechanisms of secretion and
spreading of pathological tau protein. Cellular and
Molecular Life Sciences, 77, 1721-1744. https://doi.
org/10.1007/s00018-019-03349-1.
- [25]. Narayanan, S. E., Rehuman, N. A., Harilal, S.,
Vincent, A., Rajamma, R. G., Behl, T., ... & Mathew,
B. (2020). Molecular mechanism of zinc neurotoxicity
in Alzheimer’s disease. Environmental Science and
Pollution Research, 27, 43542-43552. https://doi.
org/10.1007/s11356-020-10477-w.
- [26]. Rawat, P., Sehar, U., Bisht, J., Selman, A., Culberson,
J., & Reddy, P. H. (2022). Phosphorylated tau in
Alzheimer’s disease and other tauopathies. International
Journal of Molecular Sciences, 23(21), 12841. https://
doi.org/10.3390/ijms232112841.
- [27]. Muralidar, S., Ambi, S. V., Sekaran, S., Thirumalai, D., &
Palaniappan, B. (2020). Role of tau protein in Alzheimer's
disease: The prime pathological player. International
Journal of Biological Macromolecules, 163, 1599-1617.
https://doi.org/10.1016/j.ijbiomac.2020.07.327.
- [28]. Al Mamun, A., Uddin, M. S., Mathew, B., & Ashraf, G. M.
(2020). Toxic tau: Structural origins of tau aggregation
in Alzheimer's disease. Neural Regeneration Research,
15(8), 1417. https://doi.org/10.4103/1673-5374.274329.
- [29]. Mineur, Y. S., & Picciotto, M. R. (2021). The role of
acetylcholine in negative encoding bias: Too much of a
good thing?. European Journal of Neuroscience, 53(1),
114-125. https://doi.org/10.1111/ejn.14641.
- [30]. Pepeu, G., & Giovannini, M. G. (2017). The fate of
the brain cholinergic neurons in neurodegenerative
diseases. Brain Research, 1670, 173-184. https://doi.
org/10.1016/j.brainres.2017.06.023.
- [31]. Majdi, A., Sadigh-Eteghad, S., Rahigh Aghsan, S.,
Farajdokht, F., Vatandoust, S. M., Namvaran, A., &
Mahmoudi, J. (2020). Amyloid-β, tau, and the cholinergic
system in Alzheimer’s disease: Seeking direction in a
tangle of clues. Reviews in the Neurosciences, 31(4),
391-413. https://doi.org/10.1515/revneuro-2019-0089.
- [32]. Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F.
(2022). Role of cholinergic signaling in Alzheimer’s
disease. Molecules, 27(6), 1816. https://doi.
org/10.3390/molecules27061816.
- [33]. Liu, Y., Nguyen, M., Robert, A., & Meunier, B. (2019).
Metal ions in Alzheimer’s disease: A key role or not?.
Accounts of Chemical Research, 52(7), 2026-2035.
https://doi.org/10.1002/brb3.252.
- [34]. Li, Z., Liu, Y., Wei, R., Yong, V. W., & Xue, M. (2022).
The important role of zinc in neurological diseases.
Biomolecules, 13(1), 28. https://doi.org/10.3390/
biom13010028.
- [35]. Huat, T. J., Camats-Perna, J., Newcombe, E. A., Valmas,
N., Kitazawa, M., & Medeiros, R. (2019). Metal toxicity
links to Alzheimer's disease and neuroinflammation.
Journal of Molecular Biology, 431(9), 1843-1868.
https://doi.org/10.1016/j.jmb.2019.01.018.
- [36]. Balachandran, R. C., Mukhopadhyay, S., McBride, D.,
Veevers, J., Harrison, F. E., Aschner, M., ... & Bowman,
A. B. (2020). Brain manganese and the balance
between essential roles and neurotoxicity. Journal of
Biological Chemistry, 295(19), 6312-6329. https://doi.
org/10.1074/jbc.REV119.009453.
- [37]. Martins Jr, A. C., Gubert, P., Villas Boas, G. R., Meirelles
Paes, M., Santamaría, A., Lee, E., ... & Aschner,
M. (2020). Manganese-induced neurodegenerative
diseases and possible therapeutic approaches. Expert
Review of Neurotherapeutics, 20(11), 1109-1121.
https://doi.org/10.1080/14737175.2020.1807330.
- [38]. Mezzaroba, L., Alfieri, D. F., Simão, A. N. C., &
Reiche, E. M. V. (2019). The role of zinc, copper,
manganese and iron in neurodegenerative diseases.
Neurotoxicology, 74, 230-241. https://doi.org/10.1016/j.
neuro.2019.07.007.
- [39]. Viktorinova, A., & Durfinova, M. (2021). Mini-
Review: Is iron-mediated cell death (ferroptosis) an
identical factor contributing to the pathogenesis of
some neurodegenerative diseases?. Neuroscience
Letters, 745, 135627. https://doi.org/10.1016/j.
neulet.2021.135627.
- [40]. Kajarabille, N., & Latunde-Dada, G. O. (2019).
Programmed cell-death by ferroptosis: Antioxidants as
mitigators. International Journal of Molecular Sciences,
20(19), 4968. https://doi.org/10.3390/ijms20194968.
- [41]. Gong, N. J., Dibb, R., Bulk, M., van der Weerd, L., & Liu,
C. (2019). Imaging beta amyloid aggregation and iron
accumulation in Alzheimer's disease using quantitative
susceptibility mapping MRI. Neuroimage, 191, 176-185.
https://doi.org/10.1016/j.neuroimage.2019.02.019.
- [42]. Eriksen, J. L., Wszolek, Z., & Petrucelli, L. (2005).
Molecular pathogenesis of Parkinson disease. Archives
of Neurology, 62(3), 353-357. https://doi.org/10.1001/
archneur.62.3.353.
- [43]. Bitmez, B., Gultekin, S. K., Albayrak, I. G., Deveci, Y.,
Sicak, Y., Akalin, E., ... & Arslan, B. A. (2023). Effects of
Hypericum perforatum extract on 6-hydroxydopamine
neurotoxicity in differentiated SH-SY5Y cells. Egyptian
Pharmaceutical Journal, 22(2), 188-191. https://doi.
org/10.4103/epj.epj_180_22.
- [44]. Lee, A., & Gilbert, R. M. (2016). Epidemiology of
Parkinson disease. Neurologic Clinics, 34(4), 955-965.
https://doi.org/10.1016/j.ncl.2016.06.012.
- [45]. Durmus, H., Gokalp, M. A., & Hanagasi, H. A. (2015).
Prevalence of Parkinson’s disease in Baskale, Turkey:
A population based study. Neurological sciences, 36(3),
411-413. https://doi.org/10.1007/s10072-014-1988-x.
- [46]. Olgun, H., Zayimoğlu, E., & Cankaya, S. (2018).
Incidence of sarcopenia and dynapenia according to
stage in patients with idiopathic Parkinson’s disease.
Neurological Sciences, 39(8), 1415-1421. https://doi.
org/10.1007/s10072-018-3439-6.
- [47]. Siddique, Y. H. (2022). Drosophila: A Model to study
the pathogenesis of Parkinson’s disease. CNS &
Neurological Disorders-Drug Targets, 21(3), 259-277.
https://doi.org/10.2174/1871527320666210809120621.
- [48]. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M.,
Brundin, P., Volkmann, J., ... & Lang, A. E. (2017).
Parkinson disease. Nature Reviews Disease Primers,
3(1), 1-21. https://doi.org/10.1038/nrdp.2017.13.
- [49]. Picca, A., Calvani, R., Coelho-Junior, H. J., Landi,
F., Bernabei, R., & Marzetti, E. (2020). Mitochondrial
dysfunction, oxidative stress, and neuroinflammation:
Intertwined roads to neurodegeneration. Antioxidants,
9(8), 647. https://doi.org/10.3390/antiox9080647.
- [50]. Bose, A., & Beal, M. F. (2016). Mitochondrial dysfunction
in Parkinson's disease. Journal of Neurochemistry,
139, 216-231. https://doi.org/10.1111/jnc.13731.
- [51]. Kim, T. Y., Leem, E., Lee, J. M., & Kim, S. R. (2020).
Control of reactive oxygen species for the prevention
of parkinson’s disease: The possible application
of flavonoids. Antioxidants, 9(7), 583. https://doi.
org/10.3390/antiox9070583.
- [52]. Sheridan, C., Delivani, P., Cullen, S. P., & Martin, S.
J. (2008). Bax- or Bak-induced mitochondrial fission
can be uncoupled from cytochrome C release.
Molecular Cell, 31, 570-585. https://doi.org/10.1016/j.
molcel.2008.08.002.
- [53]. Villalpando-Rodriguez, G. E., & Gibson, S. B. (2021).
Reactive oxygen species (ROS) regulates different
types of cell death by acting as a rheostat. Oxidative
Medicine and Cellular Longevity, 2021, 9912436.
https://doi.org/10.1155/2021/9912436.
- [54]. Erekat, N. S. (2022). Apoptosis and its therapeutic
implications in neurodegenerative diseases. Clinical
Anatomy, 35(1), 65-78. https://doi.org/10.1002/
ca.23792.
- [55]. Dionísio, P. A., Amaral, J. D., & Rodrigues, C. M. P.
(2021). Oxidative stress and regulated cell death in
Parkinson’s disease. Ageing Research Reviews, 67,
101263. https://doi.org/10.1016/j.arr.2021.101263.
- [56]. Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M.,
Minami, A., & Matsuda, S. (2017). PINK1 signaling in
mitochondrial homeostasis and in aging. International
Journal of Molecular Medicine, 39(1), 3-8. https://doi.
org/10.3892/ijmm.2016.2827.
- [57]. Dawson, T. M., & Dawson, V. L. (2018). Excitotoxic
programmed cell death involves caspase-independent
mechanisms. Acute Neuronal Injury (pp. 3-17). Springer,
Cham. https://doi.org/10.1007/978-3-319-77495-4_1.
- [58]. Behl, T., Kumar, S., Althafar, Z. M., Sehgal, A., Singh,
S., Sharma, N., ... & Bungau, S. (2022). Exploring the
role of ubiquitin–proteasome system in Parkinson's
disease. Molecular Neurobiology, 59(7), 4257-4273.
https://doi.org/10.1007/s12035-022-02851-1.
- [59]. Moon, H. E., & Paek, S. H. (2015). Mitochondrial
dysfunction in Parkinson's disease. Experimental
Neurobiology, 24(2), 103. https://doi.org/10.5607/
en.2015.24.2.103
- [60]. More, S. V., Kumar, H., Kim, I. S., Song, S. Y., & Choi,
D. K. (2013). Cellular and molecular mediators of
neuroinflammation in the pathogenesis of Parkinson’s
disease. Mediators of Inflammation, 2013, 952375.
https://doi.org/10.1155/2013/952375.
- [61]. Weiss, F., Labrador-Garrido, A., Dzamko, N., & Halliday,
G. (2022). Immune responses in the Parkinson's
disease brain. Neurobiology of Disease, 168, 105700.
https://doi.org/10.1016/j.nbd.2022.105700.
- [62]. Isik, S., Yeman Kiyak, B., Akbayir, R., Seyhali, R., &
Arpaci, T. (2023). Microglia mediated neuroinflammation
in Parkinson’s disease. Cells, 12(7), 1012. https://doi.
org/10.3390/cells12071012.
- [63]. Simon, D. K., Tanner, C. M., & Brundin, P. (2020).
Parkinson disease epidemiology, pathology, genetics,
and pathophysiology. Clinics in Geriatric Medicine,
36(1), 1-12. https://doi.org/10.1016/j.cger.2019.08.002.
- [64]. Deng, H., Wang, P., & Jankovic, J. (2018). The genetics
of Parkinson disease. Ageing Research Reviews, 42,
72-85. https://doi.org/10.1016/j.arr.2017.12.007.
- [65]. Turkez, H., Yıldırım, S., Sahin, E., Arslan, M. E.,
Emsen, B., Tozlu, O. O., ... & Mardinoglu, A. (2022).
Boron compounds exhibit protective effects against
aluminum-induced neurotoxicity and genotoxicity: In
vitro and in vivo study. Toxics, 10(8), 428. https://doi.
org/10.3390/toxics10080428.
- [66]. Kar, F, Hacıoğlu, C., Özkoç, M., Üstünışık, N., Bütün, A.,
Sema, U., & Kanbak, G. (2018). The new perspective
neuroprotective effect of boric acid against ethanolinduced
oxidative damage on synaptosome. Journal of
Applied Biological Sciences, 12(2), 28-33.
- [67]. Ataizi, Z. S., Ozkoc, M., Kanbak, G., Karimkhani, H.,
Donmez, D. B., Ustunisik, N., & Ozturk, B. (2021).
Evaluation of the neuroprotective role of boric acid in
preventing traumatic brain injury-mediated oxidative
stress. Turkish Neurosurgery, 31(4), 25692-18. https://
doi.org/10.5137/1019-5149.JTN.25692-18.5.
- [68]. İlhan, A. O., Can, B., Kar, F., Gündoğdu, A. Ç., Söğüt,
İ., & Kanbak, G. (2023). An investigation into the
protective effects of various doses of boric acid on liver,
kidney, and brain tissue damage caused by high levelsof acute alcohol consumption. Biological Trace Element
Research, 201, 5346–5357. https://doi.org/10.1007/
s12011-023-03699-9.
- [69]. Alak, G., Ucar, A., Yeltekin, A. Ç., Çomaklı, S., Parlak,
V., Taş, I. H., ... & Türkez, H. (2018). Neuroprotective
effects of dietary borax in the brain tissue of rainbow trout
(Oncorhynchus mykiss) exposed to copper-induced
toxicity. Fish Physiology and Biochemistry, 44, 1409-
1420. https://doi.org/10.1007/s10695-018-0530-0.
- [70]. Coban, F. K., Ince, S., Kucukkurt, I., Demirel, H. H.,
& Hazman, O. (2015). Boron attenuates malathioninduced
oxidative stress and acetylcholinesterase
inhibition in rats. Drug and Chemical Toxicology, 38(4),
391-399. https://doi.org/10.3109/01480545.2014.9741
09.
- [71]. Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z.,
Demirel, H. H., Kucukkurt, I., ... & Zhu, K. (2019).
Bisphenol-A induced oxidative stress, inflammatory
gene expression, and metabolic and histopathological
changes in male Wistar albino rats: Protective role of
boron. Toxicology Research, 8(2), 262-269. https://doi.
org/10.1039/c8tx00312b.
- [72]. Ince, S., Kucukkurt, I., Acaroz, U., Arslan-Acaroz,
D., & Varol, N. (2019). Boron ameliorates arsenicinduced
DNA damage, proinflammatory cytokine
gene expressions, oxidant/antioxidant status, and
biochemical parameters in rats. Journal of Biochemical
and Molecular Toxicology, 33(2), e22252. https://doi.
org/10.1002/jbt.22252.
- [73]. Sahin, N., Akdemir, F., Orhan, C., Aslan, A., Agca,
C. A., Gencoglu, H., ... & Sahin, K. (2012). A novel
nutritional supplement containing chromium picolinate,
phosphatidylserine, docosahexaenoic acid, and boron
activates the antioxidant pathway Nrf2/HO-1 and
protects the brain against oxidative stress in high-fatfed
rats. Nutritional Neuroscience, 15(5), 42-47. https://
doi.org/10.1179/1476830512Y.0000000018.
- [74]. Orhan, C., Şahin, N., Tuzcu, Z., Komorowski, J. R., &
Şahin, K. (2017). Combined oral supplementation of
chromium picolinate, docosahexaenoic acid, and boron
enhances neuroprotection in rats fed a high-fat diet.
Turkish Journal of Medical Sciences, 47(5), 1616-1625.
https://doi.org/ 10.3906/sag-1701-54.
- [75]. Hacioglu, C., Kar, F., Kar, E., Kara, Y., & Kanbak, G.
(2021). Effects of curcumin and boric acid against
neurodegenerative damage induced by amyloid beta
(1-42). Biological Trace Element Research, 199, 3793-
3800. https://doi.org/10.1007/s12011-020-02511-2.
- [76]. Özdemir, Ç., Arslan, M., Küçük, A., Yığman, Z., &
Dursun, A. D. (2023). Therapeutic efficacy of boric acid
treatment on brain tissue and cognitive functions in rats
with experimental Alzheimer’s disease. Drug Design,
Development and Therapy, 1453-1462. https://doi.
org/10.2147/DDDT.S405963.
- [77]. Yildirim, C., Yar Saglam, A. S., Guney, S., Turan, B.,
Ebegil, M., Coskun Cevher, S., & Balabanli, B. (2023).
Investigation covering the effect of boron plus taurine
application on protein carbonyl and advanced oxidation
protein products levels in experimental Alzheimer model.
Biological Trace Element Research, 201(4), 1905-1912.
https://doi.org/ 10.1007/s12011-022-03293-5.
- [78]. Hu, W. Y., He, Z. Y., Yang, L. J., Zhang, M., Xing, D., &
Xiao, Z. C. (2015). The Ca 2+ channel inhibitor 2-APB
reverses β-amyloid-induced LTP deficit in hippocampus
by blocking Bax and caspase-3 hyperactivation. British
Journal of Pharmacology, 172(9), 2273-2285. https://
doi.org/10.1111/bph.13048.
- [79]. Abad-García, A., Ocampo-Néstor, A. L., Das, B. C.,
Farfán-García, E. D., Bello, M., Trujillo-Ferrara, J.
G., & Soriano-Ursúa, M. A. (2022). Interactions of a
boron-containing levodopa derivative on D 2 dopamine
receptor and its effects in a Parkinson disease model.
JBIC Journal of Biological Inorganic Chemistry, 1-11.
https://doi.org/10.1007/s00775-021-01915-2.
- [80]. Yavuz, E., Çevik, G., Çevreli, B., & Kaşıkçı, E. S. (2023).
Effect of boric acid and quercetin combination on
oxidative stress/cognitive function in parkinson model.
Journal of Boron, 8(3), 85-91. https://doi.org/10.30728/
boron.1215949.
- [81]. Üstündağ, F. D., Ünal, İ., Üstündağ, Ü. V., Cansız, D.,
Beler, M., Karagöz, A., ... & Emekli-Alturfan, E. (2022).
3-Pyridinylboronic acid ameliorates rotenone-induced
oxidative stress through Nrf2 target genes in zebrafish
embryos. Neurochemical Research, 47(6), 1553-1564.
https://doi.org/10.1007/s11064-022-03548-6.
- [82]. Vaidya, B., Kaur, H., Thapak, P., Sharma, S. S., & Singh,
J. N. (2022). Pharmacological modulation of TRPM2
channels via PARP pathway leads to neuroprotection in
MPTP-induced Parkinson’s disease in Sprague dawley
rats. Molecular Neurobiology, 59(3), 1528-1542. https://
doi.org/10.1007/s12035-021-02711-4.
- [83]. Smida, K., Albedah, M. A., Rashid, R. F., & Al-Qawasmi,
A. R. (2023). Molecular dynamics method for targeting
α-synuclein aggregation induced Parkinson's disease
using boron nitride nanostructures. Engineering
Analysis with Boundary Elements, 146, 89-95. https://
doi.org/10.1016/j.enganabound.2022.10.016.
- [84]. Barrón-González, M., Montes-Aparicio, A. V., Cuevas-
Galindo, M. E., Orozco-Suárez, S., Barrientos, R.,
Alatorre, A., ... & Soriano-Ursúa, M. A. (2023). Boroncontaining
compounds on neurons: Actions and potential
applications for treating neurodegenerative diseases.
Journal of Inorganic Biochemistry, 238, 112027. https://
doi.org/10.1016/j.jinorgbio.2022.112027.