Araştırma Makalesi
BibTex RIS Kaynak Göster

Specification of lethal concentration (LC50) of boron toxicity on daphnia pulex (Leydig, 1860) via using probit model

Yıl 2024, , 76 - 81, 28.06.2024
https://doi.org/10.30728/boron.1415733

Öz

Statistical models used in toxicity experiments have been quite useful tools in interpreting the organism's susceptibility, exposure response, amount of tolerable concentration, and function of tolerance time. In order to determine and evaluate the toxic effects of boron on Daphnia pulex (Leydig, 1860), different boron concentrations considered to be tolerable in aquatic ecosystems were tested for D. pulex. Percentage mortality rates at different boron concentrations and probit regression estimates at these concentrations were investigated through the static method. Probit analysis in this study revealed that rising boron concentrations led to mortality, and that finding was statistically significant with P value. These results indicate that the use of episodic boron, which enters the aquatic ecosystem through natural or unnatural means, should be planned due to its potential for stress or toxicity situations on organisms.

Kaynakça

  • [1] Power, P. P., & Woods, W. G. (1997). The chemistry of boron and its speciation in plants. Plant and Soil, 193, 1-13. https://doi.org/10.1023/A:1004231922434
  • [2] Řezanka, T., & Sigler, K. (2008). Biologically active compounds of semi-metals. Studies in Natural Products Chemistry, 35, 835-921. https://doi.org/10.1016/S1572-5995(08)80018-X
  • [3] U.S. Environmental Protection Agency (US EPA). (2003). Drinking water contaminant candidate list. http://www.epa.gov/safewater/ccl [4] Scorei, R. (2006). Boron, essential micronutrient for animal nutrition (Analele IBNA, Vol. 22, pp. 75-85). The National Research - Development Institute for Animal Biology and Nutrition. https://ibna.ro/anale/Anale_22_2006%20pdf/Anale%20IBNA%2022_11%20Scorei.pdf
  • [5] Acar, Ü., İnanan, B. E., Zemheri, F., Kesbiç, O. S., & Yılmaz, S. (2018). Acute exposure to boron in Nile tilapia (Oreochromis niloticus): Median-lethal concentration (LC50), blood parameters, DNA fragmentation of blood and sperm cells. Chemosphere, 213, 345-350. https://doi.org/10.1016/j.chemosphere.2018.09.063
  • [6] Konuk, M., Liman, R., & Cigerci, I. H. (2007). Determination of genotoxic effect of boron on Allium cepa root meristematic cells. Pakistan Journal of Botany, 39(1), 73-79. https://www.pakbs.org/pjbot/PDFs/39(1)/PJB39(1)073.pdf
  • [7] Kot, F. S. (2015). Boron in the environment. In: Kabay, N., Bryjak, M., & Hilal, N. (Eds.), Boron Separation Processes (pp. 1- 33). Elsevier. ISBN 9780444634542.
  • [8] Sokmen, N., & Buyukakinci, B. Y. (2018). The usage of boron/boron compounds in the textile industry and its situation in Turkey. CBU International Conference Proceedings, 6, 1158-1165. https://doi.org/10.12955/cbup.v6.1309
  • [9] Moss, S. A., & Nagpal, N. K. (2003). Ambient Water Quality Guidelines for Boron- Full Report. British Columbia. Water Protection Section, Ministry of Water, Land and Air Protection. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/boron/boron-tech-appnx.pdf
  • [10] National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 16211214, Borax. https://pubchem.ncbi.nlm.nih.gov/compound/Borax.
  • [11] Klotz, J. H., Moss, J., Zhao, R., Davis Jr, L. R., & Patterson, R. S. (1994). Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae). Journal of Eeconomic Entomology, 87(6), 1534-1536. https://doi.org/10.1093/ jee/87.6.1534
  • [12] Gersich, F. M. (1984). Evaluation of a static renewal chronic toxicity test method for Daphnia magna straus using boric acid. Environmental Toxicology and Chemistry: An International Journal, 3(1), 89-94. https://doi.org/10.1002/etc.5620030111
  • [13] Yeşilbudak, B. (2022). Mini Bio-Ecological Scale Indicators Used in Comparison of Water Quality Criteria of Wetlands. International Multilingual Journal of Science and Technology, 7(8): 5358-5362. ISSN: 2528-9810.
  • [14] Yeşilbudak, B. (2022). Some morphological traits and heavy metal accumulation in muscle tissue of Ruditapes decussatus (Linnaeus, 1758). Eskişehir Technical University Journal of Science and Technology C-Life Sciences and Biotechnology, 11(2), 39-49. https://doi.org/10.18036/estubtdc.1045591
  • [15] Martins, J., Teles, L. O., & Vasconcelos, V. (2007). Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International, 33(3), 414-425. https://doi.org/10.1016/j.envint.2006.12.006
  • [16] Luo, T., Chen, J., Song, B., Ma, H., Fu, Z., & Peijnenburg, W. J. G. M. (2017). Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquatic Toxicology, 191, 105-112. https://doi.org/10.1016/j.aquatox.2017.07.016
  • [17] Bownik, A. (2017). Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Science of the Total Environment, 601-602, 194-205. https://doi.org/10.1016/j.scitotenv.2017.05.199 [18] Colbourne, J. K., Shaw, J. R., Sostare, E., Rivetti, C., Derelle, R., Barnett, R., Campos, B., LaLone, C., Viant M. R., & Hodges, G. (2022). Toxicity by descent: A comparative approach for chemical hazard assessment. Environmental Advances, 9, 100287. https://doi.org/10.1016/j.envadv.2022.100287
  • [19] Benzie, J. A. H. (2005). Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Pub. ISBN: 90-5782-151-6
  • [20] DeForest, D. K., Brix, K. V., & Adams, W. J. (1999). Critical review of proposed residue-based selenium toxicity thresholds for freshwater fish. Human and Ecological Risk Assessment: An International Journal, 5(6), 1187-1228. https://doi.org/10.1080/108 07039.1999.10518886
  • [21] U.S. Environmental Protection Agency (2002). Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms (EPA-821-R-02-013). https://www.epa.gov/sites/default/files/2015-08/documents/short-term-chronic-freshwater-wet-manual_2002.pdf
  • [22] Howe, P. D. (1998). A review of boron effects in the environment. Biological Trace Element Research, 66, 153-166. https://doi.org/10.1007/BF02783135
  • [23] Sprague, J. B. (1970). Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Research, 4(1), 3-32. https://doi.org/10.1016/0043-1354(70)90018-7
  • [24] Eaton, A. D., & Franson, M. A. H. (Eds.). (1981). Standard methods for the examination of water and waste water (Vol. 6). American Public Health Association. ISBN 087553287X.
  • [25] Stephan, C. E. (1977). Methods for calculating an LC50. In Mayer, F. L., & Hamelink, J. L. (Eds.), Aquatic Toxicology and Hazard Evaluation: Proceedings of the First Annual Symposium on Aquatic Toxicology: A Symposium (pp. 65-84). ASTM International.
  • [26] Finney, D. J. (Eds.). (2009). Probit Analysis. London: Cambridge University Press. ISBN: 9780521135900.
  • [27] Rice, E. W., & Bridgewater, L. (Eds.). (2012). Standard methods for the examination of water and wastewater (Vol. 10). American Public Health Association. ISBN 9780875532875
  • [28] IBM Corp. (2016). IBM SPSS Statistics for Windows (Version 24.0) [Computer Software]. Armonk, NY: IBM Corp. https://www-01.ibm.com/support/docview. wss?uid=swg21476197
  • [29] Kobayashi, K., Pillai, K. S. (Eds.). (2003). Applied Statistics in Toxicology and Pharmacology. Science Pub Inc. ISBN: 9781578083046.
  • [30] AAT Bioquest, Inc. (2023). Quest Graph™ LC50 Calculator. AAT Bioquest. https://www.aatbio.com/tools/lc50-calculator
  • [31] Cai, M., Hu, R., Zhang, K., Ma, S., Zheng, L., Yu, Z., & Zhang, J. (2018). Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. Environmental Science and Pollution Research, 25, 1559-1567. https://doi.org/10.1007/s11356-017-0541-x
  • [32] Higgins, D., & Miesner, J. F. (1995). Assessment of Aquatic Toxicity in Irrigation Drain-Water, Newlands Project Area, Carson Desert, Nevada, March-August 1995 (Final Report EC 30.14.6). Nevada Fish and Wildlife Office Division of Environmental Quality. https://ecos.fws.gov/ServCat/DownloadFile/7576?Reference=7827
  • [33] Hassan, J., & Tabarraei, H. (2015). Toxicity of copper on rainbow trout: lethal concentration or lethal dose evaluation. Environmental Science: An Indian Journal, 11(3), 98-102. https://www.tsijournals.com/articles/toxicity-of-copper-on-rainbow-trout-lethal-concentration-or-lethal-dose-evaluation.pdf
  • [34] Topcu, Y. (2008). Effective Factors’ Analysis on Willingness to Utilize from Farmers’ Agricultural Support Policies: The Case Study of Erzurum Province. Akdeniz University Journal of the Faculty of Agriculture, 21(2), 205-212. https://dergipark.org.tr/en/download/article-file/18080

Daphnia pulex (Leydig, 1860) Üzerindeki Bor Toksisitesinin Öldürücü Konsantrasyonunun (LC50) Probit Model Kullanılarak Belirlenmesi

Yıl 2024, , 76 - 81, 28.06.2024
https://doi.org/10.30728/boron.1415733

Öz

Toksisite deneylerinde kullanılan istatistiksel modeller, organizmanın duyarlılığını, maruziyet tepkisini, tolere edilebilir konsantrasyon miktarını ve tolerans süresinin fonksiyonunu yorumlamada oldukça faydalı araçlar olmuşlardır. Borun Daphnia pulex (Leydig, 1860) üzerindeki toksik etkilerini belirlemek ve değerlendirmek amacıyla, su ekosistemlerinde tolere edilebilir olduğu düşünülen farklı bor derişimleri D. pulex için test edilmiştir. Farklı bor derişimlerindeki yüzde ölüm oranları ve bu derişimlerindeki probit regresyon tahminleri statik yöntemle araştırıldı. Bu çalışmada yapılan probit analizi, artan bor konsantrasyonlarının ölümlere yol açtığını ve bu bulgunun P değeri ile istatistiksel olarak anlamlı olduğunu ortaya koymuştur. Bu sonuçlar, su ekosistemine doğal veya doğal olmayan yollarla giren epizodik borun, organizmalar üzerindeki olası potansiyel stres veya toksisite durumları oluşturması nedeniyle kullanımının planlı olarak sürdürülmesi gerektiğini göstermektedir.

Kaynakça

  • [1] Power, P. P., & Woods, W. G. (1997). The chemistry of boron and its speciation in plants. Plant and Soil, 193, 1-13. https://doi.org/10.1023/A:1004231922434
  • [2] Řezanka, T., & Sigler, K. (2008). Biologically active compounds of semi-metals. Studies in Natural Products Chemistry, 35, 835-921. https://doi.org/10.1016/S1572-5995(08)80018-X
  • [3] U.S. Environmental Protection Agency (US EPA). (2003). Drinking water contaminant candidate list. http://www.epa.gov/safewater/ccl [4] Scorei, R. (2006). Boron, essential micronutrient for animal nutrition (Analele IBNA, Vol. 22, pp. 75-85). The National Research - Development Institute for Animal Biology and Nutrition. https://ibna.ro/anale/Anale_22_2006%20pdf/Anale%20IBNA%2022_11%20Scorei.pdf
  • [5] Acar, Ü., İnanan, B. E., Zemheri, F., Kesbiç, O. S., & Yılmaz, S. (2018). Acute exposure to boron in Nile tilapia (Oreochromis niloticus): Median-lethal concentration (LC50), blood parameters, DNA fragmentation of blood and sperm cells. Chemosphere, 213, 345-350. https://doi.org/10.1016/j.chemosphere.2018.09.063
  • [6] Konuk, M., Liman, R., & Cigerci, I. H. (2007). Determination of genotoxic effect of boron on Allium cepa root meristematic cells. Pakistan Journal of Botany, 39(1), 73-79. https://www.pakbs.org/pjbot/PDFs/39(1)/PJB39(1)073.pdf
  • [7] Kot, F. S. (2015). Boron in the environment. In: Kabay, N., Bryjak, M., & Hilal, N. (Eds.), Boron Separation Processes (pp. 1- 33). Elsevier. ISBN 9780444634542.
  • [8] Sokmen, N., & Buyukakinci, B. Y. (2018). The usage of boron/boron compounds in the textile industry and its situation in Turkey. CBU International Conference Proceedings, 6, 1158-1165. https://doi.org/10.12955/cbup.v6.1309
  • [9] Moss, S. A., & Nagpal, N. K. (2003). Ambient Water Quality Guidelines for Boron- Full Report. British Columbia. Water Protection Section, Ministry of Water, Land and Air Protection. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/boron/boron-tech-appnx.pdf
  • [10] National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 16211214, Borax. https://pubchem.ncbi.nlm.nih.gov/compound/Borax.
  • [11] Klotz, J. H., Moss, J., Zhao, R., Davis Jr, L. R., & Patterson, R. S. (1994). Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae). Journal of Eeconomic Entomology, 87(6), 1534-1536. https://doi.org/10.1093/ jee/87.6.1534
  • [12] Gersich, F. M. (1984). Evaluation of a static renewal chronic toxicity test method for Daphnia magna straus using boric acid. Environmental Toxicology and Chemistry: An International Journal, 3(1), 89-94. https://doi.org/10.1002/etc.5620030111
  • [13] Yeşilbudak, B. (2022). Mini Bio-Ecological Scale Indicators Used in Comparison of Water Quality Criteria of Wetlands. International Multilingual Journal of Science and Technology, 7(8): 5358-5362. ISSN: 2528-9810.
  • [14] Yeşilbudak, B. (2022). Some morphological traits and heavy metal accumulation in muscle tissue of Ruditapes decussatus (Linnaeus, 1758). Eskişehir Technical University Journal of Science and Technology C-Life Sciences and Biotechnology, 11(2), 39-49. https://doi.org/10.18036/estubtdc.1045591
  • [15] Martins, J., Teles, L. O., & Vasconcelos, V. (2007). Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International, 33(3), 414-425. https://doi.org/10.1016/j.envint.2006.12.006
  • [16] Luo, T., Chen, J., Song, B., Ma, H., Fu, Z., & Peijnenburg, W. J. G. M. (2017). Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquatic Toxicology, 191, 105-112. https://doi.org/10.1016/j.aquatox.2017.07.016
  • [17] Bownik, A. (2017). Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Science of the Total Environment, 601-602, 194-205. https://doi.org/10.1016/j.scitotenv.2017.05.199 [18] Colbourne, J. K., Shaw, J. R., Sostare, E., Rivetti, C., Derelle, R., Barnett, R., Campos, B., LaLone, C., Viant M. R., & Hodges, G. (2022). Toxicity by descent: A comparative approach for chemical hazard assessment. Environmental Advances, 9, 100287. https://doi.org/10.1016/j.envadv.2022.100287
  • [19] Benzie, J. A. H. (2005). Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Pub. ISBN: 90-5782-151-6
  • [20] DeForest, D. K., Brix, K. V., & Adams, W. J. (1999). Critical review of proposed residue-based selenium toxicity thresholds for freshwater fish. Human and Ecological Risk Assessment: An International Journal, 5(6), 1187-1228. https://doi.org/10.1080/108 07039.1999.10518886
  • [21] U.S. Environmental Protection Agency (2002). Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms (EPA-821-R-02-013). https://www.epa.gov/sites/default/files/2015-08/documents/short-term-chronic-freshwater-wet-manual_2002.pdf
  • [22] Howe, P. D. (1998). A review of boron effects in the environment. Biological Trace Element Research, 66, 153-166. https://doi.org/10.1007/BF02783135
  • [23] Sprague, J. B. (1970). Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Research, 4(1), 3-32. https://doi.org/10.1016/0043-1354(70)90018-7
  • [24] Eaton, A. D., & Franson, M. A. H. (Eds.). (1981). Standard methods for the examination of water and waste water (Vol. 6). American Public Health Association. ISBN 087553287X.
  • [25] Stephan, C. E. (1977). Methods for calculating an LC50. In Mayer, F. L., & Hamelink, J. L. (Eds.), Aquatic Toxicology and Hazard Evaluation: Proceedings of the First Annual Symposium on Aquatic Toxicology: A Symposium (pp. 65-84). ASTM International.
  • [26] Finney, D. J. (Eds.). (2009). Probit Analysis. London: Cambridge University Press. ISBN: 9780521135900.
  • [27] Rice, E. W., & Bridgewater, L. (Eds.). (2012). Standard methods for the examination of water and wastewater (Vol. 10). American Public Health Association. ISBN 9780875532875
  • [28] IBM Corp. (2016). IBM SPSS Statistics for Windows (Version 24.0) [Computer Software]. Armonk, NY: IBM Corp. https://www-01.ibm.com/support/docview. wss?uid=swg21476197
  • [29] Kobayashi, K., Pillai, K. S. (Eds.). (2003). Applied Statistics in Toxicology and Pharmacology. Science Pub Inc. ISBN: 9781578083046.
  • [30] AAT Bioquest, Inc. (2023). Quest Graph™ LC50 Calculator. AAT Bioquest. https://www.aatbio.com/tools/lc50-calculator
  • [31] Cai, M., Hu, R., Zhang, K., Ma, S., Zheng, L., Yu, Z., & Zhang, J. (2018). Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. Environmental Science and Pollution Research, 25, 1559-1567. https://doi.org/10.1007/s11356-017-0541-x
  • [32] Higgins, D., & Miesner, J. F. (1995). Assessment of Aquatic Toxicity in Irrigation Drain-Water, Newlands Project Area, Carson Desert, Nevada, March-August 1995 (Final Report EC 30.14.6). Nevada Fish and Wildlife Office Division of Environmental Quality. https://ecos.fws.gov/ServCat/DownloadFile/7576?Reference=7827
  • [33] Hassan, J., & Tabarraei, H. (2015). Toxicity of copper on rainbow trout: lethal concentration or lethal dose evaluation. Environmental Science: An Indian Journal, 11(3), 98-102. https://www.tsijournals.com/articles/toxicity-of-copper-on-rainbow-trout-lethal-concentration-or-lethal-dose-evaluation.pdf
  • [34] Topcu, Y. (2008). Effective Factors’ Analysis on Willingness to Utilize from Farmers’ Agricultural Support Policies: The Case Study of Erzurum Province. Akdeniz University Journal of the Faculty of Agriculture, 21(2), 205-212. https://dergipark.org.tr/en/download/article-file/18080
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Burcu Yeşilbudak 0000-0002-3627-0024

Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 6 Ocak 2024
Kabul Tarihi 11 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yeşilbudak, B. (2024). Specification of lethal concentration (LC50) of boron toxicity on daphnia pulex (Leydig, 1860) via using probit model. Journal of Boron, 9(2), 76-81. https://doi.org/10.30728/boron.1415733