Derleme
BibTex RIS Kaynak Göster

Review of properties, synthesis, and energy applications of borophene, a novel boron-based 2D material

Yıl 2024, , 82 - 95, 28.06.2024
https://doi.org/10.30728/boron.1442569

Öz

At least 16 bulk polymorphs of linked icosahedrons exist in boron that are not found in other materials, due to the low covalent radius and sp2 hybridization capacity of boron atoms. One of these is borophene, an exciting new nanomaterial with a wide range of possible energy uses. The existence of borophene, a two-dimensional (2D) material, has been proven by both theoretical and experimental studies. Borophene's high theoretical specific capacities, magnetic conductivity, and ion transport properties make it a promising candidate in energy applications. In this study, firstly, the structure, chemical, and physical properties of borophene were mentioned. Then, in terms of synthesis approaches, both top-down and bottom-up techniques (such as atomic layer deposition (ALD), chemical vapor deposition (CVD), exfoliation by sonochemistry, molecular beam epitaxy (MBE), and multi-step thermal decomposition (MTD) for ultrahigh-vacuum borophene deposition technologies) were discussed. Finally, its use as a catalyst in high-metal-ion batteries, hydrogen storage (HS), Nanoelectronics applications hydrogen evolution reaction (HER) was mentioned.

Kaynakça

  • [1] Bilgiç, G., Şahin, M., & Kaplan, H. (2020). A system design for large scale production of elemental boron by electrochemical deposition. Journal of The Electrochemical Society, 167(16), 162513. https://doi.org/10.1149/1945-7111/abd2d7.
  • [2] Bilgiç, G. (2022). Investigation of boron-based ionic liquids for energy applications. In Wongchoosuk, C. (Ed.), Characteristics and applications of boron. IntechOpen. https://doi.org/10.5772/intechopen.105970.
  • [3] Bilgiç, G., Korkmaz, N., Şahin, M., & Karadağ, A. (2022). Synthesis, structural, andelectrochemical properties of boron-based Ionic liquid. Ionics, 28(7), 3289–3300. https://doi.org/10.1007/s11581-022-04575-7.
  • [4] Fazilaty, M., Pourahmadi, M., Reza Shayesteh, M., & Hashemian, S. (2020). χ3 borophene-based detection of hydrogen sulfide via gas nanosensors. Chemical Physics Letters, 741, 137066. https://doi.org/10.1016/j.cplett.2019.137066.
  • [5] Oganov, A. R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C. W., … & Solozhenko, V. L. (2009). Ionic high-pressure form of elemental boron. Nature, 457(7231), 863–867. https://doi.org/10.1038/nature07736.
  • [6] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of ag–SNO2 electrical contact material. Journal of Nanoelectronics and Optoelectronics, 14(7), 1010–1015. https://doi.org/10.1166/jno.2019.2592.
  • [7] Biyik, S., Arslan, F., & Aydin, M. (2014). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44(1), 457–466. https://doi.org/10.1007/s11664-014-3399-4
  • [8] Sahoo, B. B., Pandey, V. S., Dogonchi, A. S., Thatoi, D. N., Nayak, N., & Nayak, M. K. (2023). Exploring the potential of borophene-based materials for improving energy storage in supercapacitors. Inorganic Chemistry Communications, 154, 110919. https://doi.org/10.1016/j.inoche.2023.110919.
  • [9] Zarechnaya, E. Yu., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V., … Simak, S. I. (2009). Superhard semiconducting optically transparent high-pressure phase of boron. Physical Review Letters, 102(18), 185501-185504. https:// doi.org/10.1103/PhysRevLett.102.185501.
  • [10] Tang, X., Chen, H., & Ding, Y. (2018). Mechanical properties of double-layered borophene with Li-storage. Materials Research Express, 6(3), 035010. https://doi.org/10.1088/2053-1591/aaf367.
  • [11] Wang, X., Liang, J., You, Q., Zhu, J., Fang, F., Xiang, Y., & Song, J. (2020). Bandgap engineering of hydroxy‐functionalized borophene for superior photo‐electrochemical performance. Angewandte Chemie International Edition, 59(52), 23559–23563. https://doi.org/10.1002/anie.202010723.
  • [12] Duo, Y., Xie, Z., Wang, L., Mahmood Abbasi, N., Yang, T., Li, Z., … & Zhang, H. (2021). Borophene-based biomedical applications: Status and future challenges. Coordination Chemistry Reviews, 427, 213549. https://doi.org/10.1016/j.ccr.2020.213549.
  • [13] Kaneti, Y. V., Benu, D. P., Xu, X., Yuliarto, B., Yamauchi, Y., & Golberg, D. (2021). Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chemical Reviews, 122(1), 1000–1051. https://doi.org/10.1021/acs.chemrev.1c00233.
  • [14] Wang, Z.-Q., Lü, T.-Y., Wang, H.-Q., Feng, Y. P., & Zheng, J.-C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14, 33403. https://doi.org/10.1007/s11467-019-0884-5.
  • [15] Rahman, A., Rahman, M. T., Chowdhury, M. A., Bin Ekram, S., Uddin, M. M. K., Islam, Md. R., & Dong, L. (2023). Emerging 2D borophene: Synthesis, characterization, and sensing applications. Sensors and Actuators A: Physical, 359, 114468. https://doi.org/10.1016/j.sna.2023.114468.
  • [16] Boustani, I. (1997). New quasi-planar surfaces of bare boron. Surface Science, 370(2–3), 355–363. https://doi.org/10.1016/s0039-6028(96)00969-7.
  • [17] Boustani, I., Quandt, A., Hernández, E., & Rubio, A. (1999). New boron based nanostructured materials. The Journal of Chemical Physics, 110(6), 3176–3185. https://doi.org/10.1063/1.477976.
  • [18] Lau, K. C., & Pandey, R. (2007). Stability and electronic properties of atomistically engineered 2d boron sheets. The Journal of Physical Chemistry C, 111(7), 2906–2912. https://doi.org/10.1021/jp066719w.
  • [19] Yakobson, B. I., Gonzalez Szwacki, N., & Sadrzadeh, A. (2007). The boron buckyball. ECS Meeting Abstracts, MA2007-01(28), 1093–1093. https://doi.org/10.1149/ma2007-01/28/1093.
  • [20] Chand, H., Kumar, A., & Krishnan, V. (2021). Borophene and boron‐based nanosheets: Recent advances in synthesis strategies and applications in the field of environment and energy. Advanced Materials Interfaces, 8(15), 2100045. https://doi.org/10.1002/admi.202100045.
  • [21] Li, C., Tareen, A. K., Long, J., Iqbal, M., Ahmad, W., Khan, M. F., … & Khan, K. (2023). Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications. Progress in Solid State Chemistry, 71, 100416. https://doi.org/10.1016/j.progsolidstchem.2023.100416.
  • [22] Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., … & Guisinger, N. P. (2019). Borophene synthesis on au(111). ACS Nano, 13(4), 3816–3822. https://doi.org/10.1021/acsnano.8b09339.
  • [23] Baraiya, B. A., Som, N. N., Mankad, V., Wu, G., Wang, J., & Jha, P. K. (2020). Nitrogen decorated borophene: An empowering contestant for hydrogen storage. Applied Surface Science, 527, 146852. https://doi.org/10.1016/j.apsusc.2020.146852.
  • [24] Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New sensation in flatland. Advanced Materials, 32(34), 2000531. https://doi.org/10.1002/adma.202000531.
  • [25] Duan, J.-X., Tian, Y.-P., Wang, C.-B., & Zhang, L.-L. (2023). First-principles study of χ3-Borophene as a candidate for gas sensing and the removal of harmful gases. Nanomaterials, 13(14), 2117. https://doi.org/10.3390/nano13142117.
  • [26] Wang, Xiaoyuan, Wu, R., Tian, P., Yan, Y., Gao, Y., & Xuan, F. (2021). Borophene nanoribbons via strain engineering for the hydrogen evolution reaction: A First-principles study. The Journal of Physical Chemistry C, 125(31), 16955–16962. https://doi.org/10.1021/acs.jpcc.1c02770.
  • [27] Wang, R., & Zheng, J.-C. (2023). Promising transition metal decorated borophene catalyst for water splitting. RSC Advances, 13(14), 9678–9685. https://doi.org/10.1039/d3ra00299c.
  • [28] Zhou, Y-P., & Jiang, J-W. (2017) Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific Reports 7, 45516. https://doi.org/10.1038/srep45516.
  • [29] Penev, E. S., Kutana, A., & Yakobson, B. I. (2016). Can two-dimensional boron superconduct?. Nano Letters, 16(4), 2522–2526. https://doi.org/10.1021/acs.nanolett.6b00070.
  • [30] Hou, C., Tai, G., Hao, J., Sheng, L., Liu, B., & Wu, Z. (2020). Ultrastable crystalline semiconducting hydrogenated borophene. Angewandte Chemie, 132(27), 10911–10917. https://doi.org/10.1002/anie.202001045.
  • [31] Zhang, Z., Penev, E. S., & Yakobson, B. I. (2017). Two-dimensional boron: Structures, properties and applications. Chemical Society Reviews, 46(22), 6746–6763. https://doi.org/10.1039/C7CS00261K.
  • [32] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4.
  • [33] Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Hu, M., & Su, G. (2015). Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics, 17(7), 4854–4858. https://doi.org/10.1039/C4CP04858J.
  • [34] Liu, X., Wang, L., Yakobson, B. I., & Hersam, M. C. (2021). Nanoscale probing of image potential states and electron transfer doping in borophene polymorphs. Nano Letters, 21(2), 1169–1174. https://doi.org/10.1021/acs.nanolett.0c04869.
  • [35] Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., … & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080.
  • [36] Myronov, M. (2018). Molecular beam epitaxy of high mobility silicon, silicon germanium and germanium quantum well heterostructures. Molecular Beam Epitaxy, 37–54. https://doi.org/10.1016/B978-0-12-812136-8.00003-7.
  • [37] Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., … & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. Nature Chemistry, 8(6), 563–568. https://doi.org/10.1038/nchem.2491.
  • [38] Zhu, L., Zhao, B., Zhang, T., Chen, G., & Yang, S. A. (2019). How is honeycomb borophene stabilized on Al(111)?. The Journal of Physical Chemistry C, 123(23), 14858–14864. https://doi.org/10.1021/acs.jpcc.9b03447.
  • [39] Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., … Wu, K. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63(5), 282–286. https://doi.org/10.1016/j.scib.2018.02.006.
  • [40] Liu, X., Li, Q., Ruan, Q., Rahn, M. S., Yakobson, B. I., & Hersam, M. C. (2021). Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 21(1), 35–https://doi.org/10.1038/s41563-021-01084-2.
  • [41] Wu, Z., Tai, G., Liu, R., Hou, C., Shao, W., Liang, X., & Wu, Z. (2021). Van der waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Applied Materials & Interfaces, 13(27), 31808–31815. https://doi.org/10.1021/acsami.1c03146.
  • [42] Mazaheri, A., Javadi, M., & Abdi, Y. (2021). Chemical vapor deposition of two dimensional boron sheets by thermal decomposition of Diborane. ACS Applied Materials & Interfaces, 13(7), 8844–8850. https://doi.org/10.1021/acsami.0c22580.
  • [43] Tai, G., Hu, T., Zhou, Y., Wang, X., Kong, J., Zeng, T., … Wang, Q. (2015). Synthesis of atomically thin boron films on copper foils. Angewandte Chemie International Edition, 54(51), 15473–15477. https://doi.org/10.1002/anie.201509285.
  • [44] Karikalan, N., Elavarasan, M., & Yang, T. C. K. (2019). Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol. Ultrasonics Sonochemistry, 56, 297–304. https://doi.org/10.1016/j.ultsonch.2019.04.025.
  • [45] Chowdhury, M. A., Uddin, M. M. K., Shuvho, Md. B., Rana, M., & Hossain, N. (2022). A novel temperature dependent method for borophene synthesis. Applied Surface Science Advances, 11, 100308. https://doi.org/10.1016/j.apsadv.2022.100308.
  • [46] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. (2018). Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444.
  • [47] Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding borophene and its hybrids. Advanced Materials, 31(27), e1900353. https://doi.org/10.1002/adma.201900353.
  • [48] Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., … & Liu, Z.-H. (2020). Few-layer and largeflake size borophene: Preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532–27537. https://doi.org/10.1039/D0RA03492D.
  • [49] Wu, Z., Yin, Y., Hou, C., & Tai, G. (2023). Borophene reinforcing copper matrix composites: Preparation and mechanical properties. Journal of Alloys and Compounds, 930, 167370. https://doi.org/10.1016/j.jallcom.2022.167578.
  • [50] Zielinkiewicz, K., Baranowska, D., & Mijowska, E. (2023). Ball milling induced borophene flakes fabrication. RSC Advances, 13(25), 16907–16914. https://doi.org/10.1039/d3ra02400h.
  • [51]. Liu, T., Chen, Y., Wang, H., Zhang, M., Yuan, L., & Zhang, C. (2017). Li-decorated Β12 borophene as potential candidates for hydrogen storage: A first-principle study. Materials, 10(12), 1399. https://doi.org/10.3390/ma10121399.
  • [52] Ledwaba, K., Karimzadeh, S., & Jen, T.-C. (2022). Enhancement in the hydrogen storage capability of borophene through yttrium doping: A theoretical study. Journal of Energy Storage, 55, 105500. https://doi.org/10.1016/j.est.2022.105500.
  • [53] Sosa, A. N., de Santiago, F., Miranda, Á., Trejo, A., Salazar, F., Pérez, L. A., & Cruz Irisson, M. (2021). Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation. International Journal of Hydrogen Energy, 46(38), 20245–20256. https://doi.org/10.1016/j.ijhydene.2020.04.129.
  • [54] Cabria I, Lebon A, Torres MB, Gallego LJ, Vega A. (2021) Hydrogen storage capacity of Li decorated borophene and pristine graphene slit pores: A combined ab initio and quantumthermodynamic study. Applied Surface Science, 562, 150019. https://doi.org/10.1016/j.apsusc.2021.150019.
  • [55] Wang, L.-C., Zhang, Z.-C., Ma, L.-C., Ma, L., & Zhang, J.-M. (2022). First-principles study of hydrogen storage on Li, na and K-decorated defective boron nitride nanosheets. The European Physical Journal B, 95(3). https://doi.org/10.1140/epjb/s10051-022-00312-1.
  • [56] Ma, C., Yin, P., Khan, K., Tareen, A. K., Huang, R., Du, J., … & Gao, L. (2021). Broadband nonlinear photonics in few‐layer borophene. Small, 17(7). https://doi.org/10.1002/smll.202006891.
  • [57] Shen, H., Li, Y., & Sun, Q. (2018). CU atomic chains supported on β-borophene sheets for effective co2 electroreduction. Nanoscale, 10(23), 11064–11071. https://doi.org/10.1039/c8nr01855c.
  • [58] Mortazavi, B., Rahaman, O., Ahzi, S., & Rabczuk, T. (2017). Flat borophene films as anode materials for Mg, Na or li-ion batteries with ultra high capacities: A first-principles study. Applied Materials Today, 8, 60–67. https://doi.org/10.1016/j.apmt.2017.04.010.
  • [59] Xia, Z., Chen, X., Zhang, W., Li, J., Xiao, B., & Du, H. (2018). Enhancement of lithium ion hopping on halogen-doped χ3 borophene. Physical Chemistry Chemical Physics, 20(37), 24427–24433. https://doi.org/10.1039/C8CP03803A.
  • [60] Göktuna, S., & Taşaltın, N. (2021). Preparation and characterization of Pani: α borophene electrode for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 134, 114833. https://doi.org/10.1016/j.physe.2021.114833.
  • [61] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. (2018). Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444.
  • [62] Mohanta, M. K., & Qureshi, M. (2023). Surface charge-directed borophene–phosphorous nitride nanodot heterojunction supports for enhanced photoelectrochemical performance. Chemical Communications, 59(14), 1955–1958. https://doi.org/10.1039/d2cc05900b.
  • [63] Zhang, X. S., Mao, S., Wang, J., Onggowarsito, C., Feng, A., Han, R., … & Huang, Z. (2024). Boron nanosheets boosting solar thermal water evaporation. Nanoscale, 16(9), 4628–4636. https://doi.org/10.1039/d3nr06146a.

Borofen, yeni bir bor bazlı 2 boyutlu malzeme: özellikleri, sentezi ve enerji uygulamaları

Yıl 2024, , 82 - 95, 28.06.2024
https://doi.org/10.30728/boron.1442569

Öz

Bor atomlarının düşük kovalent yarıçapı ve sp2 hibridizasyon kapasitesi nedeniyle borda diğer malzemelerde bulunmayan en az 16 toplu bağlı ikosahedron polimorfu mevcuttur. Bunlardan biri, çok çeşitli olası enerji kullanımlarına sahip, heyecan verici yeni bir nanomateryal olan borofendir. 2 boyutlu bir malzeme olan borofenin varlığı hem teorik hem de deneysel çalışmalarla kanıtlanmıştır. Borofenin yüksek teorik spesifik kapasiteleri, manyetik iletkenliği ve iyon taşıma özellikleri, onu enerji uygulamalarında umut verici bir aday haline getirmektedir. Bu çalışmada öncelikle borofenin yapısından, kimyasal ve fiziksel özelliklerinden bahsedilmiştir. Daha sonra, sentez yaklaşımları açısından hem yukarıdan aşağıya hem de aşağıdan yukarıya teknikler (atomik katman biriktirme (ALD), kimyasal buhar biriktirme (CVD), sonokimya ile pul pul dökülme, moleküler ışın epitaksi (MBE) ve çok adımlı termal ayrıştırma gibi) (MTD) ultra yüksek vakumlu borofen biriktirme teknolojileri) tartışıldı. Son olarak yüksek metal iyonlu pillerde katalizör olarak kullanımından, hidrojen depolamasından (HS), Nanoelektronik uygulamalarından hidrojen evrim reaksiyonundan (HER) bahsedildi.

Kaynakça

  • [1] Bilgiç, G., Şahin, M., & Kaplan, H. (2020). A system design for large scale production of elemental boron by electrochemical deposition. Journal of The Electrochemical Society, 167(16), 162513. https://doi.org/10.1149/1945-7111/abd2d7.
  • [2] Bilgiç, G. (2022). Investigation of boron-based ionic liquids for energy applications. In Wongchoosuk, C. (Ed.), Characteristics and applications of boron. IntechOpen. https://doi.org/10.5772/intechopen.105970.
  • [3] Bilgiç, G., Korkmaz, N., Şahin, M., & Karadağ, A. (2022). Synthesis, structural, andelectrochemical properties of boron-based Ionic liquid. Ionics, 28(7), 3289–3300. https://doi.org/10.1007/s11581-022-04575-7.
  • [4] Fazilaty, M., Pourahmadi, M., Reza Shayesteh, M., & Hashemian, S. (2020). χ3 borophene-based detection of hydrogen sulfide via gas nanosensors. Chemical Physics Letters, 741, 137066. https://doi.org/10.1016/j.cplett.2019.137066.
  • [5] Oganov, A. R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C. W., … & Solozhenko, V. L. (2009). Ionic high-pressure form of elemental boron. Nature, 457(7231), 863–867. https://doi.org/10.1038/nature07736.
  • [6] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of ag–SNO2 electrical contact material. Journal of Nanoelectronics and Optoelectronics, 14(7), 1010–1015. https://doi.org/10.1166/jno.2019.2592.
  • [7] Biyik, S., Arslan, F., & Aydin, M. (2014). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44(1), 457–466. https://doi.org/10.1007/s11664-014-3399-4
  • [8] Sahoo, B. B., Pandey, V. S., Dogonchi, A. S., Thatoi, D. N., Nayak, N., & Nayak, M. K. (2023). Exploring the potential of borophene-based materials for improving energy storage in supercapacitors. Inorganic Chemistry Communications, 154, 110919. https://doi.org/10.1016/j.inoche.2023.110919.
  • [9] Zarechnaya, E. Yu., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V., … Simak, S. I. (2009). Superhard semiconducting optically transparent high-pressure phase of boron. Physical Review Letters, 102(18), 185501-185504. https:// doi.org/10.1103/PhysRevLett.102.185501.
  • [10] Tang, X., Chen, H., & Ding, Y. (2018). Mechanical properties of double-layered borophene with Li-storage. Materials Research Express, 6(3), 035010. https://doi.org/10.1088/2053-1591/aaf367.
  • [11] Wang, X., Liang, J., You, Q., Zhu, J., Fang, F., Xiang, Y., & Song, J. (2020). Bandgap engineering of hydroxy‐functionalized borophene for superior photo‐electrochemical performance. Angewandte Chemie International Edition, 59(52), 23559–23563. https://doi.org/10.1002/anie.202010723.
  • [12] Duo, Y., Xie, Z., Wang, L., Mahmood Abbasi, N., Yang, T., Li, Z., … & Zhang, H. (2021). Borophene-based biomedical applications: Status and future challenges. Coordination Chemistry Reviews, 427, 213549. https://doi.org/10.1016/j.ccr.2020.213549.
  • [13] Kaneti, Y. V., Benu, D. P., Xu, X., Yuliarto, B., Yamauchi, Y., & Golberg, D. (2021). Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chemical Reviews, 122(1), 1000–1051. https://doi.org/10.1021/acs.chemrev.1c00233.
  • [14] Wang, Z.-Q., Lü, T.-Y., Wang, H.-Q., Feng, Y. P., & Zheng, J.-C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14, 33403. https://doi.org/10.1007/s11467-019-0884-5.
  • [15] Rahman, A., Rahman, M. T., Chowdhury, M. A., Bin Ekram, S., Uddin, M. M. K., Islam, Md. R., & Dong, L. (2023). Emerging 2D borophene: Synthesis, characterization, and sensing applications. Sensors and Actuators A: Physical, 359, 114468. https://doi.org/10.1016/j.sna.2023.114468.
  • [16] Boustani, I. (1997). New quasi-planar surfaces of bare boron. Surface Science, 370(2–3), 355–363. https://doi.org/10.1016/s0039-6028(96)00969-7.
  • [17] Boustani, I., Quandt, A., Hernández, E., & Rubio, A. (1999). New boron based nanostructured materials. The Journal of Chemical Physics, 110(6), 3176–3185. https://doi.org/10.1063/1.477976.
  • [18] Lau, K. C., & Pandey, R. (2007). Stability and electronic properties of atomistically engineered 2d boron sheets. The Journal of Physical Chemistry C, 111(7), 2906–2912. https://doi.org/10.1021/jp066719w.
  • [19] Yakobson, B. I., Gonzalez Szwacki, N., & Sadrzadeh, A. (2007). The boron buckyball. ECS Meeting Abstracts, MA2007-01(28), 1093–1093. https://doi.org/10.1149/ma2007-01/28/1093.
  • [20] Chand, H., Kumar, A., & Krishnan, V. (2021). Borophene and boron‐based nanosheets: Recent advances in synthesis strategies and applications in the field of environment and energy. Advanced Materials Interfaces, 8(15), 2100045. https://doi.org/10.1002/admi.202100045.
  • [21] Li, C., Tareen, A. K., Long, J., Iqbal, M., Ahmad, W., Khan, M. F., … & Khan, K. (2023). Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications. Progress in Solid State Chemistry, 71, 100416. https://doi.org/10.1016/j.progsolidstchem.2023.100416.
  • [22] Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., … & Guisinger, N. P. (2019). Borophene synthesis on au(111). ACS Nano, 13(4), 3816–3822. https://doi.org/10.1021/acsnano.8b09339.
  • [23] Baraiya, B. A., Som, N. N., Mankad, V., Wu, G., Wang, J., & Jha, P. K. (2020). Nitrogen decorated borophene: An empowering contestant for hydrogen storage. Applied Surface Science, 527, 146852. https://doi.org/10.1016/j.apsusc.2020.146852.
  • [24] Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New sensation in flatland. Advanced Materials, 32(34), 2000531. https://doi.org/10.1002/adma.202000531.
  • [25] Duan, J.-X., Tian, Y.-P., Wang, C.-B., & Zhang, L.-L. (2023). First-principles study of χ3-Borophene as a candidate for gas sensing and the removal of harmful gases. Nanomaterials, 13(14), 2117. https://doi.org/10.3390/nano13142117.
  • [26] Wang, Xiaoyuan, Wu, R., Tian, P., Yan, Y., Gao, Y., & Xuan, F. (2021). Borophene nanoribbons via strain engineering for the hydrogen evolution reaction: A First-principles study. The Journal of Physical Chemistry C, 125(31), 16955–16962. https://doi.org/10.1021/acs.jpcc.1c02770.
  • [27] Wang, R., & Zheng, J.-C. (2023). Promising transition metal decorated borophene catalyst for water splitting. RSC Advances, 13(14), 9678–9685. https://doi.org/10.1039/d3ra00299c.
  • [28] Zhou, Y-P., & Jiang, J-W. (2017) Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific Reports 7, 45516. https://doi.org/10.1038/srep45516.
  • [29] Penev, E. S., Kutana, A., & Yakobson, B. I. (2016). Can two-dimensional boron superconduct?. Nano Letters, 16(4), 2522–2526. https://doi.org/10.1021/acs.nanolett.6b00070.
  • [30] Hou, C., Tai, G., Hao, J., Sheng, L., Liu, B., & Wu, Z. (2020). Ultrastable crystalline semiconducting hydrogenated borophene. Angewandte Chemie, 132(27), 10911–10917. https://doi.org/10.1002/anie.202001045.
  • [31] Zhang, Z., Penev, E. S., & Yakobson, B. I. (2017). Two-dimensional boron: Structures, properties and applications. Chemical Society Reviews, 46(22), 6746–6763. https://doi.org/10.1039/C7CS00261K.
  • [32] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4.
  • [33] Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Hu, M., & Su, G. (2015). Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics, 17(7), 4854–4858. https://doi.org/10.1039/C4CP04858J.
  • [34] Liu, X., Wang, L., Yakobson, B. I., & Hersam, M. C. (2021). Nanoscale probing of image potential states and electron transfer doping in borophene polymorphs. Nano Letters, 21(2), 1169–1174. https://doi.org/10.1021/acs.nanolett.0c04869.
  • [35] Mannix, A. J., Zhou, X.-F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., … & Guisinger, N. P. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513–1516. https://doi.org/10.1126/science.aad1080.
  • [36] Myronov, M. (2018). Molecular beam epitaxy of high mobility silicon, silicon germanium and germanium quantum well heterostructures. Molecular Beam Epitaxy, 37–54. https://doi.org/10.1016/B978-0-12-812136-8.00003-7.
  • [37] Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., … & Wu, K. (2016). Experimental realization of two-dimensional boron sheets. Nature Chemistry, 8(6), 563–568. https://doi.org/10.1038/nchem.2491.
  • [38] Zhu, L., Zhao, B., Zhang, T., Chen, G., & Yang, S. A. (2019). How is honeycomb borophene stabilized on Al(111)?. The Journal of Physical Chemistry C, 123(23), 14858–14864. https://doi.org/10.1021/acs.jpcc.9b03447.
  • [39] Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., … Wu, K. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63(5), 282–286. https://doi.org/10.1016/j.scib.2018.02.006.
  • [40] Liu, X., Li, Q., Ruan, Q., Rahn, M. S., Yakobson, B. I., & Hersam, M. C. (2021). Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 21(1), 35–https://doi.org/10.1038/s41563-021-01084-2.
  • [41] Wu, Z., Tai, G., Liu, R., Hou, C., Shao, W., Liang, X., & Wu, Z. (2021). Van der waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Applied Materials & Interfaces, 13(27), 31808–31815. https://doi.org/10.1021/acsami.1c03146.
  • [42] Mazaheri, A., Javadi, M., & Abdi, Y. (2021). Chemical vapor deposition of two dimensional boron sheets by thermal decomposition of Diborane. ACS Applied Materials & Interfaces, 13(7), 8844–8850. https://doi.org/10.1021/acsami.0c22580.
  • [43] Tai, G., Hu, T., Zhou, Y., Wang, X., Kong, J., Zeng, T., … Wang, Q. (2015). Synthesis of atomically thin boron films on copper foils. Angewandte Chemie International Edition, 54(51), 15473–15477. https://doi.org/10.1002/anie.201509285.
  • [44] Karikalan, N., Elavarasan, M., & Yang, T. C. K. (2019). Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol. Ultrasonics Sonochemistry, 56, 297–304. https://doi.org/10.1016/j.ultsonch.2019.04.025.
  • [45] Chowdhury, M. A., Uddin, M. M. K., Shuvho, Md. B., Rana, M., & Hossain, N. (2022). A novel temperature dependent method for borophene synthesis. Applied Surface Science Advances, 11, 100308. https://doi.org/10.1016/j.apsadv.2022.100308.
  • [46] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. (2018). Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444.
  • [47] Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding borophene and its hybrids. Advanced Materials, 31(27), e1900353. https://doi.org/10.1002/adma.201900353.
  • [48] Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., … & Liu, Z.-H. (2020). Few-layer and largeflake size borophene: Preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532–27537. https://doi.org/10.1039/D0RA03492D.
  • [49] Wu, Z., Yin, Y., Hou, C., & Tai, G. (2023). Borophene reinforcing copper matrix composites: Preparation and mechanical properties. Journal of Alloys and Compounds, 930, 167370. https://doi.org/10.1016/j.jallcom.2022.167578.
  • [50] Zielinkiewicz, K., Baranowska, D., & Mijowska, E. (2023). Ball milling induced borophene flakes fabrication. RSC Advances, 13(25), 16907–16914. https://doi.org/10.1039/d3ra02400h.
  • [51]. Liu, T., Chen, Y., Wang, H., Zhang, M., Yuan, L., & Zhang, C. (2017). Li-decorated Β12 borophene as potential candidates for hydrogen storage: A first-principle study. Materials, 10(12), 1399. https://doi.org/10.3390/ma10121399.
  • [52] Ledwaba, K., Karimzadeh, S., & Jen, T.-C. (2022). Enhancement in the hydrogen storage capability of borophene through yttrium doping: A theoretical study. Journal of Energy Storage, 55, 105500. https://doi.org/10.1016/j.est.2022.105500.
  • [53] Sosa, A. N., de Santiago, F., Miranda, Á., Trejo, A., Salazar, F., Pérez, L. A., & Cruz Irisson, M. (2021). Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation. International Journal of Hydrogen Energy, 46(38), 20245–20256. https://doi.org/10.1016/j.ijhydene.2020.04.129.
  • [54] Cabria I, Lebon A, Torres MB, Gallego LJ, Vega A. (2021) Hydrogen storage capacity of Li decorated borophene and pristine graphene slit pores: A combined ab initio and quantumthermodynamic study. Applied Surface Science, 562, 150019. https://doi.org/10.1016/j.apsusc.2021.150019.
  • [55] Wang, L.-C., Zhang, Z.-C., Ma, L.-C., Ma, L., & Zhang, J.-M. (2022). First-principles study of hydrogen storage on Li, na and K-decorated defective boron nitride nanosheets. The European Physical Journal B, 95(3). https://doi.org/10.1140/epjb/s10051-022-00312-1.
  • [56] Ma, C., Yin, P., Khan, K., Tareen, A. K., Huang, R., Du, J., … & Gao, L. (2021). Broadband nonlinear photonics in few‐layer borophene. Small, 17(7). https://doi.org/10.1002/smll.202006891.
  • [57] Shen, H., Li, Y., & Sun, Q. (2018). CU atomic chains supported on β-borophene sheets for effective co2 electroreduction. Nanoscale, 10(23), 11064–11071. https://doi.org/10.1039/c8nr01855c.
  • [58] Mortazavi, B., Rahaman, O., Ahzi, S., & Rabczuk, T. (2017). Flat borophene films as anode materials for Mg, Na or li-ion batteries with ultra high capacities: A first-principles study. Applied Materials Today, 8, 60–67. https://doi.org/10.1016/j.apmt.2017.04.010.
  • [59] Xia, Z., Chen, X., Zhang, W., Li, J., Xiao, B., & Du, H. (2018). Enhancement of lithium ion hopping on halogen-doped χ3 borophene. Physical Chemistry Chemical Physics, 20(37), 24427–24433. https://doi.org/10.1039/C8CP03803A.
  • [60] Göktuna, S., & Taşaltın, N. (2021). Preparation and characterization of Pani: α borophene electrode for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 134, 114833. https://doi.org/10.1016/j.physe.2021.114833.
  • [61] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E. H. (2018). Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262–1272. https://doi.org/10.1021/acsnano.7b07444.
  • [62] Mohanta, M. K., & Qureshi, M. (2023). Surface charge-directed borophene–phosphorous nitride nanodot heterojunction supports for enhanced photoelectrochemical performance. Chemical Communications, 59(14), 1955–1958. https://doi.org/10.1039/d2cc05900b.
  • [63] Zhang, X. S., Mao, S., Wang, J., Onggowarsito, C., Feng, A., Han, R., … & Huang, Z. (2024). Boron nanosheets boosting solar thermal water evaporation. Nanoscale, 16(9), 4628–4636. https://doi.org/10.1039/d3nr06146a.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Review Makaleler
Yazarlar

Gülbahar Bilgiç 0000-0002-9503-5884

Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 24 Şubat 2024
Kabul Tarihi 31 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bilgiç, G. (2024). Review of properties, synthesis, and energy applications of borophene, a novel boron-based 2D material. Journal of Boron, 9(2), 82-95. https://doi.org/10.30728/boron.1442569