Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and characterization of boron nanosheets by electrochemical exfoliation of amorphous boron

Yıl 2024, , 111 - 119, 30.09.2024
https://doi.org/10.30728/boron.1483030

Öz

Boron nanosheets are a promising material for energy, sensor and various biomedical applications. Preparation of boron nanolayers by depositing them on metal surfaces limits scalable production and reduces the potential for commercialization. Therefore, it is very important to develop a practical process to produce highly efficient and scalable boron consisting of several layers. The purpose of this study is produce boron nanosheets from amorphous boron using a unique, scalable electrochemical exfoliation method. In this method, amorphous boron was exfoliated anodically in a two-electrode setup using a mixture of sodium sulfate (Na2SO4) and glycerin. Exfoliation was performed at +20, +30, and +40 V in 0.5 M Na2SO4 to which glycerin was added (1:1 volume ratio) to increase viscosity. Structural characterization of boron nanosheets was examined by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), micro-Raman, X-Ray diffractometry (XRD) and atomic force microscopy (AFM) analyses. The average thickness of boron nanosheets exfoliated at 20 V was 15.1 nm, while exfoliation at 30 and 40 V led to average thickness values of 15.3 and 14.5 nm, respectively. The average lateral size of boron nanosheets exfoliated at 20 V is 319 nm which is larger than those that exfoliate at 30V (252 nm) and 40 V (275 nm). HRTEM images show that several nanosheets of boron are formed. When different voltage values are compared, it is possible to say that the most effective exfoliation occurs at 20 V and the boron nanosheets at this value have a relatively lower thickness.

Proje Numarası

222M300

Kaynakça

  • [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S., … & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. https://doi. org/10.1126/science.110289
  • [2] Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R., & Bucher, E. (2004). High-mobility fieldeffect transistors based on transition metal dichalcogenides. Applied Physics Letters, 84(17), 3301-3303. https://doi.org/10.1063/1.1723695
  • [3] Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., & Aufray, B. (2010). Epitaxial growth of a silicene sheet. Applied Physics Letters, 97(22), 223109. https://doi.org/10.1063/1.3524215
  • [4] Houssa, M., Pourtois, G., Afanas’ Ev, V. V., & Stesmans, A. (2010). Electronic properties of two-dimensional hexagonal germanium. Applied Physics Letters, 96(8), 082111. https://doi.org/10.1063/1.3332588
  • [5] Liu, H., Neal, A. T., Zhu, Z., Tomanek, D., & Ye, P. D. (2014). Phosphorene: a new 2D material with high carrier mobility. ACS Nano, 8(4), 4033-4041. https://doi.org/10.1021/nn501226z
  • [6] Mannix, A. J., Zhou, X. F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., … & Yacaman, M. J. (2015). Synthesis of borophenes: Anisotropic, two dimensional boron polymorphs. Science, 350(6267), 1513-1516. https://doi.org/10.1126/science.aad1080
  • [7] Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New sensation in flatland. Advanced Materials, 32(34), 2000531. https://doi.org/10.1002/adma.202000531
  • [8] Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding borophene and its hybrids. Advanced Materials, 31(27), 1900353. https://doi.org/10.1002/adma.201900353
  • [9] Xu, S., Zhao, Y., Liao, J., Yang, X., & Xu, H. (2016). The nucleation and growth of borophene on the Ag (111) surface. Nano Research, 9, 2616-2622. https://doi.org/10.1007/s12274-016-1148-0
  • [10] Biyik, S., Arslan, F., & Aydin, M. (2015). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44, 457-466. https:// doi.org/10.1007/s11664-014-3399-4
  • [11] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of ag–sno2 electrical contact material. Journal of Nanoelectronics and Optoelectronics, 14, 1010-1015. https://doi.org/10.1166/jno.2019.2592
  • [12] Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14, 1-20. https://doi.org/10.1007/s11467-019-0884-5
  • [13] Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., … & Wu, K. (2016). Experimental realization of twodimensional boron sheets. Nature Chemistry, 8, 563-568. https://doi.org/10.1038/nchem.2491
  • [14] Wu, R., Drozdov, I. K., Eltinge, S., Zahl, P., Ismail-Beigi, S., Božović, I., & Gozar, A. (2019). Large-area singlecrystal sheets of borophene on Cu (111) surfaces. Nature Nanotechnology, 14, 44-49. https://doi.org/10.1038/s41565-018-0317-6
  • [15] Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., … & Guisinger, N.P. (2019). Borophene synthesis on Au (111). ACS Nano, 13(4), 3816-3822. https://doi.org/10.1021/acsnano.8b09339
  • [16] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E .H. T. (2018). Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262-1272. https://doi.org/10.1021/acsnano.7b07444
  • [17] Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., … & Liu, Z. H. (2020). Few-layer and large flake size borophene: Preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532-7. https://doi.org/10.1039/D0RA03492D
  • [18] Sielicki, K., Maślana, K., Chen, X., & Mijowska, E. (2022). Bottom up approach of metal assisted electrochemical exfoliation of boron towards borophene. Scientific Reports, 12, 15683. https://doi.org/10.1038/s41598-022-20130-w
  • [19] Chowdhury, M. A., Uddin, M. K., Shuvho, M. B. A., Rana, M., & Hossain, N. (2022). A novel temperature dependent method for borophene synthesis. Applied Surface Science Advances, 11, 100308. https://doi.org/10.1016/j.apsadv.2022.100308
  • [20] Kuru, D., & Kuru, C. (2024). A new route to electrochemical exfoliation of borophene for scalable production. Journal of Materials Science, 59, 10220-10231. https://doi.org/10.1007/s10853-024-09769-0
  • [21] Baboukani, A. R., Khakpour, I., Drozd, V., & Wang, C. (2021). Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Structures, 2(5), 2000148. https://doi.org/10.1002/sstr.202000148
  • [22] Zhao, M., Casiraghi, C., & Parvez, K. (2024). Electrochemical exfoliation of 2D materials beyond graphene. Chemical Society Reviews, 53(6), 3036-3064. https://doi.org/10.1039/D3CS00815K
  • [23] Wang, B., Yin, B., Zhang, Z., Yin, Y., Yang, Y., Wang, H., … & Shi, S. (2022). The assembly and jamming of nanoparticle surfactants at liquid–liquid interfaces. Angewandte Chemie, 134(10), e202114936. https://doi.org/10.1002/ange.202114936
  • [24] Chand, H., Kumar, A., Bhumla, P., Naik, B. R., Balakrishnan, V., Bhattacharya, S., & Krishnan, V. (2022). Scalable production of ultrathin boron nanosheets from a low-cost precursor. Advanced Materials Interfaces, 9(23), 2200508. https://doi.org/10.1002/admi.202200508
  • [25] Yao, C., Xie, A., Shen, Y., Zhu, J., & Li, T. (2013). Green synthesis of calcium carbonate with unusual morphologies in the presence of fruit extracts. Journal of the Chilean Chemical Society, 58(4), 2235-2238. http://dx.doi.org/10.4067/S0717-97072013000400072
  • [26] Taşaltın, C., Türkmen, T.A., Taşaltın, N., & Karakuş, S. (2021). Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 borophene. Journal of Materials Science: Materials in Electronics, 32, 10750-10760. https://doi.org/10.1007/s10854-021-05732-w
  • [27] Sheng, S., Wu, J. B., Cong, X., Zhong, Q., Li, W., Hu, W., … & Wu, K. (2019). Raman spectroscopy of twodimensional borophene sheets. ACS Nano, 13(4), 4133-4139. https://doi.org/10.1021/acsnano.8b08909
  • [28] Rohani, P., Kim, S., & Swihart, M. T. (2016). Boron nanoparticles for room-emperature hydrogen generation from water. Advanced Energy Materials, 6(12), 1502550. https://doi.org/10.1002/aenm.201502550
  • [29] Zielinkiewicz, K., Baranowska, D., & Mijowska, E. (2023). Ball milling induced borophene flakes fabrication. RSC Advances, 13(25), 16907-16914. https://doi.org/10.1039/D3RA02400H
  • [30] Kierzek-Pecold, E., Kołodziejczak, J., & Pracka, I. (1967). Optical Constants of β-Rhombohedral Boron in the Region 1.2 to 6.2 eV. Physica Status Solidi B, 22(2), K147-K150. https://doi.org/10.1002/pssb.19670220263
  • [31] Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J., & Bacher, G. (2023). Limitations of the Tauc plot method. Advanced Functional Materials, 33(47), 2304523. https://doi.org/10.1002/adfm.202304523

Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu

Yıl 2024, , 111 - 119, 30.09.2024
https://doi.org/10.30728/boron.1483030

Öz

Enerji, sensör ve çeşitli biyomedikal uygulamalar için bor nanotabakaları gelecek vaat eden bir malzemedir. Bor nanotabakalarının metal yüzeyler üzerine biriktirilerek hazırlanması ölçeklenebilir üretimi kısıtlayarak ticarileştirilmesine yönelik potansiyeli azaltmaktadır. Bu nedenle, yüksek verimli ve birkaç katmandan oluşan borun ölçeklenebilir bir şekilde üretilebilmesi için pratik bir prosesin geliştirilmesi oldukça önemlidir. Bu çalışmanın amacı, ölçeklenebilir özgün bir elektrokimyasal eksfoliasyon yöntemi kullanarak amorf bordan bor nanotabakalarının sentezlenmesidir. Bu yöntemde amorf bor, sodyum sülfat (Na2SO4) ve gliserin karışımı kullanılarak iki elektrotlu bir düzenekte anodik olarak eksfoliye edilmiştir. Eksfoliasyon, viskoziteyi arttırmak için gliserinin eklendiği (1:1 hacim oranı) 0,5 M Na2SO4 içerisinde +20, +30 ve +40 V’de gerçekleştirilmiştir. Bor nanotabakalarının yapısal karakterizasyonu taramalı elektron mikroskopisi (SEM), yüksek çözünürlüklü geçirimli elektron mikroskopisi (HRTEM), Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR), X-ışınları fotoelektron spektroskopisi (XPS), mikro-Raman, X-ışınları difraktometresi (XRD) ve atomik kuvvet mikroskopisi (AFM) yöntemleri ile incelenmiştir. 20 V’de eksfoliye olan bor nanotabakalarının katmanlarının ortalama kalınlığı 15,1 nm iken, 30 ve 40 V’de eksfoliasyon sonucu olarak sırasıyla 15,3 ve 14,5 nm ortalama kalınlık değerleri elde edilmiştir. 20 V’de eksfoliye olan bor nanotabakalarının katmanlarının yanal boyutu 319 nm olup bu boyut, 30 V (252 nm) ve 40 V’de (275 nm) eksfoliye olanlardan daha büyüktür. HRTEM görüntüleri birkaç bor nanotabakasının oluştuğunu göstermektedir. Farklı voltaj değerleri karşılaştırıldığında en etkili eksfoliasyonun 20 V değerinde gerçekleştiğini ve bu değerdeki bor nanotabakalarının nispeten daha düşük kalınlığa sahip olduğunu söylemek mümkündür.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

222M300

Teşekkür

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 222M300 proje numarası ile desteklenmiştir.

Kaynakça

  • [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S., … & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. https://doi. org/10.1126/science.110289
  • [2] Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R., & Bucher, E. (2004). High-mobility fieldeffect transistors based on transition metal dichalcogenides. Applied Physics Letters, 84(17), 3301-3303. https://doi.org/10.1063/1.1723695
  • [3] Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., & Aufray, B. (2010). Epitaxial growth of a silicene sheet. Applied Physics Letters, 97(22), 223109. https://doi.org/10.1063/1.3524215
  • [4] Houssa, M., Pourtois, G., Afanas’ Ev, V. V., & Stesmans, A. (2010). Electronic properties of two-dimensional hexagonal germanium. Applied Physics Letters, 96(8), 082111. https://doi.org/10.1063/1.3332588
  • [5] Liu, H., Neal, A. T., Zhu, Z., Tomanek, D., & Ye, P. D. (2014). Phosphorene: a new 2D material with high carrier mobility. ACS Nano, 8(4), 4033-4041. https://doi.org/10.1021/nn501226z
  • [6] Mannix, A. J., Zhou, X. F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., … & Yacaman, M. J. (2015). Synthesis of borophenes: Anisotropic, two dimensional boron polymorphs. Science, 350(6267), 1513-1516. https://doi.org/10.1126/science.aad1080
  • [7] Ranjan, P., Lee, J. M., Kumar, P., & Vinu, A. (2020). Borophene: New sensation in flatland. Advanced Materials, 32(34), 2000531. https://doi.org/10.1002/adma.202000531
  • [8] Ranjan, P., Sahu, T. K., Bhushan, R., Yamijala, S. S., Late, D. J., Kumar, P., & Vinu, A. (2019). Freestanding borophene and its hybrids. Advanced Materials, 31(27), 1900353. https://doi.org/10.1002/adma.201900353
  • [9] Xu, S., Zhao, Y., Liao, J., Yang, X., & Xu, H. (2016). The nucleation and growth of borophene on the Ag (111) surface. Nano Research, 9, 2616-2622. https://doi.org/10.1007/s12274-016-1148-0
  • [10] Biyik, S., Arslan, F., & Aydin, M. (2015). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44, 457-466. https:// doi.org/10.1007/s11664-014-3399-4
  • [11] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of ag–sno2 electrical contact material. Journal of Nanoelectronics and Optoelectronics, 14, 1010-1015. https://doi.org/10.1166/jno.2019.2592
  • [12] Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14, 1-20. https://doi.org/10.1007/s11467-019-0884-5
  • [13] Feng, B., Zhang, J., Zhong, Q., Li, W., Li, S., Li, H., … & Wu, K. (2016). Experimental realization of twodimensional boron sheets. Nature Chemistry, 8, 563-568. https://doi.org/10.1038/nchem.2491
  • [14] Wu, R., Drozdov, I. K., Eltinge, S., Zahl, P., Ismail-Beigi, S., Božović, I., & Gozar, A. (2019). Large-area singlecrystal sheets of borophene on Cu (111) surfaces. Nature Nanotechnology, 14, 44-49. https://doi.org/10.1038/s41565-018-0317-6
  • [15] Kiraly, B., Liu, X., Wang, L., Zhang, Z., Mannix, A. J., Fisher, B. L., … & Guisinger, N.P. (2019). Borophene synthesis on Au (111). ACS Nano, 13(4), 3816-3822. https://doi.org/10.1021/acsnano.8b09339
  • [16] Li, H., Jing, L., Liu, W., Lin, J., Tay, R. Y., Tsang, S. H., & Teo, E .H. T. (2018). Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano, 12(2), 1262-1272. https://doi.org/10.1021/acsnano.7b07444
  • [17] Zhang, F., She, L., Jia, C., He, X., Li, Q., Sun, J., … & Liu, Z. H. (2020). Few-layer and large flake size borophene: Preparation with solvothermal-assisted liquid phase exfoliation. RSC Advances, 10(46), 27532-7. https://doi.org/10.1039/D0RA03492D
  • [18] Sielicki, K., Maślana, K., Chen, X., & Mijowska, E. (2022). Bottom up approach of metal assisted electrochemical exfoliation of boron towards borophene. Scientific Reports, 12, 15683. https://doi.org/10.1038/s41598-022-20130-w
  • [19] Chowdhury, M. A., Uddin, M. K., Shuvho, M. B. A., Rana, M., & Hossain, N. (2022). A novel temperature dependent method for borophene synthesis. Applied Surface Science Advances, 11, 100308. https://doi.org/10.1016/j.apsadv.2022.100308
  • [20] Kuru, D., & Kuru, C. (2024). A new route to electrochemical exfoliation of borophene for scalable production. Journal of Materials Science, 59, 10220-10231. https://doi.org/10.1007/s10853-024-09769-0
  • [21] Baboukani, A. R., Khakpour, I., Drozd, V., & Wang, C. (2021). Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Structures, 2(5), 2000148. https://doi.org/10.1002/sstr.202000148
  • [22] Zhao, M., Casiraghi, C., & Parvez, K. (2024). Electrochemical exfoliation of 2D materials beyond graphene. Chemical Society Reviews, 53(6), 3036-3064. https://doi.org/10.1039/D3CS00815K
  • [23] Wang, B., Yin, B., Zhang, Z., Yin, Y., Yang, Y., Wang, H., … & Shi, S. (2022). The assembly and jamming of nanoparticle surfactants at liquid–liquid interfaces. Angewandte Chemie, 134(10), e202114936. https://doi.org/10.1002/ange.202114936
  • [24] Chand, H., Kumar, A., Bhumla, P., Naik, B. R., Balakrishnan, V., Bhattacharya, S., & Krishnan, V. (2022). Scalable production of ultrathin boron nanosheets from a low-cost precursor. Advanced Materials Interfaces, 9(23), 2200508. https://doi.org/10.1002/admi.202200508
  • [25] Yao, C., Xie, A., Shen, Y., Zhu, J., & Li, T. (2013). Green synthesis of calcium carbonate with unusual morphologies in the presence of fruit extracts. Journal of the Chilean Chemical Society, 58(4), 2235-2238. http://dx.doi.org/10.4067/S0717-97072013000400072
  • [26] Taşaltın, C., Türkmen, T.A., Taşaltın, N., & Karakuş, S. (2021). Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 borophene. Journal of Materials Science: Materials in Electronics, 32, 10750-10760. https://doi.org/10.1007/s10854-021-05732-w
  • [27] Sheng, S., Wu, J. B., Cong, X., Zhong, Q., Li, W., Hu, W., … & Wu, K. (2019). Raman spectroscopy of twodimensional borophene sheets. ACS Nano, 13(4), 4133-4139. https://doi.org/10.1021/acsnano.8b08909
  • [28] Rohani, P., Kim, S., & Swihart, M. T. (2016). Boron nanoparticles for room-emperature hydrogen generation from water. Advanced Energy Materials, 6(12), 1502550. https://doi.org/10.1002/aenm.201502550
  • [29] Zielinkiewicz, K., Baranowska, D., & Mijowska, E. (2023). Ball milling induced borophene flakes fabrication. RSC Advances, 13(25), 16907-16914. https://doi.org/10.1039/D3RA02400H
  • [30] Kierzek-Pecold, E., Kołodziejczak, J., & Pracka, I. (1967). Optical Constants of β-Rhombohedral Boron in the Region 1.2 to 6.2 eV. Physica Status Solidi B, 22(2), K147-K150. https://doi.org/10.1002/pssb.19670220263
  • [31] Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J., & Bacher, G. (2023). Limitations of the Tauc plot method. Advanced Functional Materials, 33(47), 2304523. https://doi.org/10.1002/adfm.202304523
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Research Makaleler
Yazarlar

Duygu Kuru 0000-0002-9727-5785

Proje Numarası 222M300
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 21 Mayıs 2024
Kabul Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kuru, D. (2024). Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu. Journal of Boron, 9(3), 111-119. https://doi.org/10.30728/boron.1483030