Araştırma Makalesi
BibTex RIS Kaynak Göster

Production and characterization of boron-doped BNT-6BT piezoceramic powder-reinforced PVDF composites

Yıl 2024, , 153 - 162, 31.12.2024
https://doi.org/10.30728/boron.1547636

Öz

Piezoelectric materials attract intensive attention from the automotive to health industries for such applications as sensors, actuators, and transducers due to their ability to convert mechanical energy to electrical energy and also, as a reversible effect, electrical energy to mechanical energy. Since eco-friendly and renewable energy generation has gained crucial importance, piezoelectric materials offer ideal solutions in many fields. The improvements in nanomaterials and characterization techniques also offer the possibility of creating novel approaches for researchers. Along with the rising environmental awareness in recent years, studies on developing alternative materials to Pb containing compositions with similar superior properties present important outputs. In this context, this study aims to produce light and flexible composites with superior characteristics by synthesizing boron (B3+) doped 0,94(Bi0,5Na0,5)TiO3-0,06BaTiO3 BNT-6BT piezoceramics, which offer similar structure and properties as the most commonly used Pb-containing Lead zirconate titanate (PZT) ceramics, and used in polyvinylidene fluoride (PVDF) polymers. Characterization of the piezoceramic powders synthesized by hydrothermal method was performed using x-ray diffraction (XRD) and scanning electron microscopy (SEM-EDX) analyses. After the addition of the piezoceramic powders into PVDF polymer as filler material, fiber structure was obtained using the electrospinning method. The morphology of the fibers was investigated using SEM-EDX techniques, while a detailed analysis as Fourier-transform infrared spectroscopy (FT-IR) was used for observing the alteration in β phase, which provides the piezoelectric properties. The obtained results indicate that substantial improvements in the piezoelectric properties were observed by adding boron-doped piezoceramics into the PVDF polymers.

Proje Numarası

21.FEN.BİL.41

Kaynakça

  • Dittmer, R. (2013). Lead-free piezoceramics: Ergodic and nonergodic relaxor ferro-electrics based on bismuth sodium titanate. [Doctoral dissertation, Wilmington Darmstadt Technical University]. https://core.ac.uk/download/pdf/17179686.pdf
  • Genenko, Y. A., Glaum, J., Hoffmann, M. J., & Albe, K. (2015). Mechanisms of aging and fatigue in ferroelectrics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 192(C), 52-82. https://doi.org/10.1016/j.mseb.2014.10.003
  • Panda, P. K., & Sahoo, B. (2015). PZT to Lead free piezo ceramics: A review. Ferroelectrics, 474(1), 128-143. https://doi.org/10.1080/00150193.2015.997146
  • Li, Y., Moon, K., & Wong, C. P. (2005). Electronics without lead. Science, 308(5727), 1419-1420. https://doi.org/10.1126/science.1110168
  • Nguyen, T. N., Thong, H. C., Zhu, Z. X., Nie, J. K., Liu, Y. X., Xu, Z., … & Wang, K. (2021). Hardening effect in lead-free piezoelectric ceramics. Journal of Materials Research, 36(5), 996-1014. https://doi.org/10.1557/s43578-020-00016-1
  • Zidani, J., Alaoui, I. H., Zannen, M., Birks, E., Chchiyai, Z., Majdoub, M., … & Lahmar, A. (2024). On the lanthanide effect on functional properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramic. Materials, 17(8). https://doi.org/10.3390/ma17081783
  • Salimkhani, H., Fulanović, L., & Frömling, T. (2024). Sinterability of sodium bismuth titanate-based electroceramics at low temperatures. Journal of the European Ceramic Society, 44(3), 1570-1580. https://doi.org/10.1016/j.jeurceramsoc.2023.10.056
  • Ozgul, M., & Kucuk, A. (2016). B2O3 doping in 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free piezoelectric ceramics. Ceramics International, 42(16), 19119-19123. https://doi.org/10.1016/j.ceramint.2016.09.073
  • Fang, X. Q., Huang, M. J., Liu, J. X., & Feng, W. J. (2014). Dynamic effective property of piezoelectric composites with coated piezoelectric nano-fibers. Composites Science and Technology, 98, 79-85. https://doi.org/10.1016/j.compscitech.2014.04.017
  • Jain, A., Prashanth, K. J., Sharma, A. K., Jain, A., & Rashmi, P. N. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering and Science, 55(7), 1589-1616. https://doi.org/10.1002/pen.24088
  • Guo, S., Duan, X., Xie, M., Aw, K. C., & Xue, Q. (2020). Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review. Micromachines, 11(12), 1-29. https://doi.org/10.3390/mi11121076
  • Tripathy, A., Maria Joseph Raj, N. P., Kim, S. J., & Ramadoss, A. (2023). Elucidating the piezoelectric, ferroelectric, and dielectric performance of lead-free KNN/PVDF and ıts copolymer-based flexible composite films. ACS Applied Electronic Materials, 5(10), 5422-5431. https://doi.org/10.1021/acsaelm.3c00306
  • Kurakula, A., Graham, S. A., Manchi, P., Paranjape, M. V., & Yu, J. S. (2024). Enhanced energy harvesting ability of bismuth sodium titanate/polyvinylidene fluoride composite film-based piezoelectric nanogenerators for mechanical energy scavenging and safety-walker applications. Materials Today Sustainability, 25. https://doi.org/10.1016/j.mtsust.2023.100616
  • Ghasemian, M. B., Rawal, A., Wang, F., Chu, D., & Wang, D. (2017). Lattice evolution and enhanced piezoelectric properties of hydrothermally synthesised 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 nanofibers. Journal of Materials Chemistry C, 5(42), 10976-10984. https://doi.org/10.1039/c7tc03812g
  • Lu, R., Yuan, J., Shi, H., Li, B., Wang, W., Wang, D., & Cao, M. (2013). Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. CrystEngComm, 15(19), 3984-3991. https://doi.org/10.1039/c3ce40139a
  • Ghasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized leadfree piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020-15026. https://doi.org/10.1039/c7ra01293d
  • Cozza, E. S., Monticelli, O., Marsano, E., & Cebe, P. (2013). On the electrospinning of PVDF: Influence of the experimental conditions on the nanofiber properties. Polymer International, 62(1), 41-48. https://doi.org/10.1002/pi.4314
  • Qi, J. Q., Chen, W. P., Wang, Y., Chan, H. L. W., & Li, L. T. (2004). Dielectric properties of barium titanate ceramics doped by B2O3 vapor. Journal of Applied Physics, 96(11), 6937-6939. https://doi.org/10.1063/1.1814167
  • Haghi, A. K., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. Physica Status Solidi (A) Applications and Materials Science, 204(6), 1830-1834. https://doi.org/10.1002/pssa.200675301
  • Soin, N., Shah, T. H., Anand, S. C., Geng, J., Pornwannachai, W., Mandal, P., … & Siores, E. (2014). Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy and Environmental Science, 7(5), 1670-1679. https://doi.org/10.1039/c3ee43987a
  • Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. https://doi.org/10.1039/c7ra01267e

Bor katkılı BNT-6BT piezoseramik toz takviyeli PVDF kompozitlerin üretimi ve karakterizasyonu

Yıl 2024, , 153 - 162, 31.12.2024
https://doi.org/10.30728/boron.1547636

Öz

Piezoelektrik malzemeler, mekanik enerjiyi elektrik enerjisine ve tersinir olarak da elektrik enerjisini mekanik enerjiye dönüştürme kabiliyetleri sayesinde otomotivden sağlığa kadar pek çok sektörde; sensör, aktüatör ve transdüser gibi uygulamalar için yoğun ilgi görmektedir. Çevreci ve yenilenebilir enerji üretiminin büyük önem kazandığı günümüzde, yeni geliştirilen piezoelektrik malzemeler pek çok alanda ideal çözümler sunmaktadırlar. Nanomalzemeler ve karakterizasyon tekniklerinde yaşanan ilerlemeler de araştırmacılara yenilikçi yaklaşımlar geliştirme imkânları sunmaktadır. Son yıllarda artan çevre duyarlılığı ile birlikte Pb içerikli malzeme kompozisyonlarına alternatif benzer üstün özellikli malzeme geliştirilmesi araştırmaları önemli çıktılar ortaya koymuştur. Bu çerçevede bu çalışmada, en yaygın kullanılan Pb içerikli kurşun zirkonat titanat (PZT) seramiklere benzer yapı ve özellikler sunan 0,94(Bi0,5Na0,5)TiO3-0,06BaTiO3 BNT-6BT piezoseramiklerin bor (B+3) katkılı tozlarının üretimi ve bu tozların poliviniliden florür (PVDF) polimerinde kullanımı ile üstün özellikli hafif ve esnek kompozitlerin üretimi amaçlanmıştır. Hidrotermal yöntemle üretilen piezoseramik tozların karakterizasyonu x-ışını difraksyonu (XRD) ve taramalı elektron mikroskobu (SEM-EDX) analizleri ile gerçekleştirilmiştir. Piezoseramik tozlar, PVDF polimerine katkı maddesi olarak eklendikten sonra elektroeğirme yöntemiyle fiber yapılar oluşturulmuştur. Fiberlerin morfolojisi SEM-EDX teknikleri, piezoelektrik özellikleri sağlayan β fazındaki değişim ise Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR) gibi detaylı analizlerle incelenmiştir. Elde edilen sonuçlar, bor katkılı piezoseramik tozların PVDF polimerine eklenmesiyle piezoelektrik özelliklerde iyileşmeler sağlandığını göstermektedir.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Destekleyen Kurum

Bu çalışma, Afyon Kocatepe Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 21.FEN.BİL.41 numaralı proje ile desteklenmektedir.

Proje Numarası

21.FEN.BİL.41

Teşekkür

Afyon Kocatepe Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimine 21.FEN.BİL.41 numaralı proje desteği için Teşekkür ederiz.

Kaynakça

  • Dittmer, R. (2013). Lead-free piezoceramics: Ergodic and nonergodic relaxor ferro-electrics based on bismuth sodium titanate. [Doctoral dissertation, Wilmington Darmstadt Technical University]. https://core.ac.uk/download/pdf/17179686.pdf
  • Genenko, Y. A., Glaum, J., Hoffmann, M. J., & Albe, K. (2015). Mechanisms of aging and fatigue in ferroelectrics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 192(C), 52-82. https://doi.org/10.1016/j.mseb.2014.10.003
  • Panda, P. K., & Sahoo, B. (2015). PZT to Lead free piezo ceramics: A review. Ferroelectrics, 474(1), 128-143. https://doi.org/10.1080/00150193.2015.997146
  • Li, Y., Moon, K., & Wong, C. P. (2005). Electronics without lead. Science, 308(5727), 1419-1420. https://doi.org/10.1126/science.1110168
  • Nguyen, T. N., Thong, H. C., Zhu, Z. X., Nie, J. K., Liu, Y. X., Xu, Z., … & Wang, K. (2021). Hardening effect in lead-free piezoelectric ceramics. Journal of Materials Research, 36(5), 996-1014. https://doi.org/10.1557/s43578-020-00016-1
  • Zidani, J., Alaoui, I. H., Zannen, M., Birks, E., Chchiyai, Z., Majdoub, M., … & Lahmar, A. (2024). On the lanthanide effect on functional properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramic. Materials, 17(8). https://doi.org/10.3390/ma17081783
  • Salimkhani, H., Fulanović, L., & Frömling, T. (2024). Sinterability of sodium bismuth titanate-based electroceramics at low temperatures. Journal of the European Ceramic Society, 44(3), 1570-1580. https://doi.org/10.1016/j.jeurceramsoc.2023.10.056
  • Ozgul, M., & Kucuk, A. (2016). B2O3 doping in 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free piezoelectric ceramics. Ceramics International, 42(16), 19119-19123. https://doi.org/10.1016/j.ceramint.2016.09.073
  • Fang, X. Q., Huang, M. J., Liu, J. X., & Feng, W. J. (2014). Dynamic effective property of piezoelectric composites with coated piezoelectric nano-fibers. Composites Science and Technology, 98, 79-85. https://doi.org/10.1016/j.compscitech.2014.04.017
  • Jain, A., Prashanth, K. J., Sharma, A. K., Jain, A., & Rashmi, P. N. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering and Science, 55(7), 1589-1616. https://doi.org/10.1002/pen.24088
  • Guo, S., Duan, X., Xie, M., Aw, K. C., & Xue, Q. (2020). Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review. Micromachines, 11(12), 1-29. https://doi.org/10.3390/mi11121076
  • Tripathy, A., Maria Joseph Raj, N. P., Kim, S. J., & Ramadoss, A. (2023). Elucidating the piezoelectric, ferroelectric, and dielectric performance of lead-free KNN/PVDF and ıts copolymer-based flexible composite films. ACS Applied Electronic Materials, 5(10), 5422-5431. https://doi.org/10.1021/acsaelm.3c00306
  • Kurakula, A., Graham, S. A., Manchi, P., Paranjape, M. V., & Yu, J. S. (2024). Enhanced energy harvesting ability of bismuth sodium titanate/polyvinylidene fluoride composite film-based piezoelectric nanogenerators for mechanical energy scavenging and safety-walker applications. Materials Today Sustainability, 25. https://doi.org/10.1016/j.mtsust.2023.100616
  • Ghasemian, M. B., Rawal, A., Wang, F., Chu, D., & Wang, D. (2017). Lattice evolution and enhanced piezoelectric properties of hydrothermally synthesised 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 nanofibers. Journal of Materials Chemistry C, 5(42), 10976-10984. https://doi.org/10.1039/c7tc03812g
  • Lu, R., Yuan, J., Shi, H., Li, B., Wang, W., Wang, D., & Cao, M. (2013). Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. CrystEngComm, 15(19), 3984-3991. https://doi.org/10.1039/c3ce40139a
  • Ghasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized leadfree piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020-15026. https://doi.org/10.1039/c7ra01293d
  • Cozza, E. S., Monticelli, O., Marsano, E., & Cebe, P. (2013). On the electrospinning of PVDF: Influence of the experimental conditions on the nanofiber properties. Polymer International, 62(1), 41-48. https://doi.org/10.1002/pi.4314
  • Qi, J. Q., Chen, W. P., Wang, Y., Chan, H. L. W., & Li, L. T. (2004). Dielectric properties of barium titanate ceramics doped by B2O3 vapor. Journal of Applied Physics, 96(11), 6937-6939. https://doi.org/10.1063/1.1814167
  • Haghi, A. K., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. Physica Status Solidi (A) Applications and Materials Science, 204(6), 1830-1834. https://doi.org/10.1002/pssa.200675301
  • Soin, N., Shah, T. H., Anand, S. C., Geng, J., Pornwannachai, W., Mandal, P., … & Siores, E. (2014). Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy and Environmental Science, 7(5), 1670-1679. https://doi.org/10.1039/c3ee43987a
  • Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. https://doi.org/10.1039/c7ra01267e
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Serhat Tıkız 0000-0002-1340-3867

Metin Özgül 0000-0003-4273-5868

Proje Numarası 21.FEN.BİL.41
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 10 Eylül 2024
Kabul Tarihi 25 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tıkız, S., & Özgül, M. (2024). Bor katkılı BNT-6BT piezoseramik toz takviyeli PVDF kompozitlerin üretimi ve karakterizasyonu. Journal of Boron, 9(4), 153-162. https://doi.org/10.30728/boron.1547636