Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of PCL/PVA/PCL scaffold for local delivery of calcium fructoborate for bone tissue engineering

Yıl 2024, , 143 - 152, 31.12.2024
https://doi.org/10.30728/boron.1549809

Öz

Calcium fructoborate (CaFB) has gathered attention due to its boron and calcium content, both of which are known to support bone health, deposition and regeneration. Previous studies have shown that CaFB has a positive effect on bone health and has been proven to promote bone-like properties. In light of this information, a local CaFB delivering scaffold could improve bone regeneration in cases of bone tissue loss. This study aimed to design a layer-by-layer polymeric sponge capable of achieving controlled local delivery of CaFB to improve bone tissue healing. The dose-dependent effect of CaFB on the cell viability of the Saos-2 cell line was investigated in vitro. Layer by-layer structure of the polymeric scaffold supported controlled release of CaFB, with 33.9±7.4% released after 7 days of incubation. CaFB at 31.25 μg/mL concentration was able to improve Saos-2 cell viability up to 174.7±24.1% and 127.7±8.7% after 1 and 4 days of incubation. After 7 days of incubation CaFB treatment at concentrations of 250, 125, 62.5 and 31.25 μg/mL improved cell viability up to 194.3±47.7, 155.3±17.7, 149.4±5.4 and 132.5±13.3%. The polycaprolactone/polyvinyl alcohol/polycaprolactonen(PCL/PVA/PCL) scaffold supported the viability of cells for 7 days and was shown to be biocompatible. The results of this study showed that CaFB is a potential compound thatncan be locally delivered within a scaffold system to improve bone tissue regeneration.

Teşekkür

CaFB was a kind gift from Via-Bor (Türkiye). The FTIR-ATR analysis was performed by Yıldız Technical University, Application and Research Center for Science and Technology (BİTUAM).

Kaynakça

  • Rondanelli, M., Faliva, M. A., Peroni, G., Infantino, V., Gasparri, C., Iannello, G., … & Tartara, A. (2020). Pivotal role of boron supplementation on bone health: A narrative review. Journal of Trace Elements in Medicine and Biology, 62, 126577. https://doi.org/10.1016/J. JTEMB.2020.126577
  • Mahdavi, R., Belgheisi, G., Haghbin-Nazarpak, M., Omidi, M., Khojasteh, A., & Solati-Hashjin, M. (2020). Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Journal of Materials Science: Materials in Medicine, 31(11), 97. https://doi.org/10.1007/s10856-020-06430-5
  • Miljkovic, D., Miljkovic, N., & McCarty, M. F. (2004). Up-regulatory impact of boron on vitamin D function- Does it reflect inhibition of 24-hydroxylase? Medical Hypotheses, 63(6), 1054-1056. https://doi.org/10.1016/j.mehy.2003.12.053
  • Hakki, S. S., Dundar, N., Kayis, S. A., Hakki, E. E., Hamurcu, M., Kerimoglu, U., … & Nielsen, F. H. (2013). Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2), 148-153. https://doi.org/10.1016/J.JTEMB.2012.07.001
  • Armstrong, T. A., Spears, J. W., Crenshaw, T. D., & Nielsen, F. H. (2000). Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. The Journal of Nutrition, 130(10), 2575-2581. https://doi.org/10.1093/jn/130.10.2575
  • Naghii, M. R., Torkaman, G., & Mofid, M. (2006). Effects of boron and calcium supplementation on mechanical properties of bone in rats. BioFactors, 28(3-4), 195-201. https://doi.org/10.1002/biof.5520280306
  • Nielsen, F. H., & Stoecker, B. J. (2009). Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. Journal of Trace Elements in Medicine and Biology, 23(3), 195-203. https://doi.org/10.1016/j.jtemb.2009.03.003
  • Ying, X., Cheng, S., Wang, W., Lin, Z., Chen, Q., Zhang, W., … & Lu, C. Z. (2011). Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biological Trace Element Research, 144(1-3), 306-315. https://doi.org/10.1007/s12011-011-9094-x
  • Hakki, S. S., Bozkurt, B. S., & Hakki, E. E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4), 243-250. https://doi.org/10.1016/j.jtemb.2010.03.003
  • Capati, M. L. F., Nakazono, A., Igawa, K., Ookubo, K., Yamamoto, Y., Yanagiguchi, K., … & Hayashi, Y. (2016). Boron accelerates cultured osteoblastic cell activity through calcium flux. Biological Trace Element Research, 174(2), 300-308. https://doi.org/10.1007/s12011-016-0719-y
  • Seydibeyoğlu, M. Ö., Caka, M., Ulucan-Karnak, F., Onak, G., Uzel, A., Ozyildiz, F., & Karaman, O. (2021). Bone cement formulation with reduced heating of bone cement resin. Journal of Boron, 6(2), 274-282. https://doi.org/10.30728/BORON.835919
  • Uysal, İ., Yılmaz, B., & Evis, Z. (2020). Boron doped hydroxapatites in biomedical applications. Journal of Boron, 5(4), 199-208. https://doi.org/10.30728/BORON.734804
  • Aki, D., Ulag, S., Unal, S., Sengor, M., Ekren, N., Lin, C. C., … & Gunduz, O. (2020). 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Materials & Design, 196, 109094. https://doi.org/10.1016/J.MATDES.2020.109094
  • Butan, S., Filimon, V., & Bounegru, A. V. (2024). Human health impact and advanced chemical analysis of fructoborates: A comprehensive review. Chemical Papers, 78(9), 5151-5167. https://doi.org/10.1007/S11696-024-03428-Z/FIGURES/6
  • Wagner, C. C., Ferraresi Curotto, V., Pis Diez, R., & Baran, E. J. (2008). Experimental and theoretical studies of calcium fructoborate. Biological Trace Element Research, 122(1), 64-72. https://doi.org/10.1007/s12011-007-8060-0
  • Capozzi, A., Scambia, G., & Lello, S. (2020). Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas, 140, 55-63. https://doi.org/10.1016/J.MATURITAS.2020.05.020
  • Marie, P. J. (2010). The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone, 46(3), 571-576. https://doi.org/10.1016/j.bone.2009.07.082
  • Chai, Y. C., Carlier, A., Bolander, J., Roberts, S. J., Geris, L., Schrooten, J., … & Luyten, F. P. (2012). Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomaterialia, 8(11), 3876-3887. https://doi.org/10.1016/j.actbio.2012.07.002
  • Mogoşanu, G. D., Biţă, A., Bejenaru, L. E., Bejenaru, C., Croitoru, O., Rău, G., … & Scorei, R. I. (2016). Calcium fructoborate for bone and cardiovascular health. Biological Trace Element Research, 172(2), 277-281. https://doi.org/10.1007/s12011-015-0590-2
  • Turck, D., Castenmiller, J., De Henauw, S., Hirsch- Ernst, K. I., Kearney, J., Maciuk, A., … & Knutsen, H. K. (2021). Safety of calcium fructoborate as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(7). https://doi.org/10.2903/j.efsa.2021.6661
  • Manda, D., Popa, O., Vladoiu, S., & Dumitrache, C. (2009). Calcium fructoborate effect on osteoblast mineralization in vitro. Bone, 44, S298-S299. https://doi.org/10.1016/J.BONE.2009.03.545
  • Scorei, R. I., & Rotaru, P. (2011). Calcium fructoborate-Potential anti-inflammatory agent. Biological Trace Element Research, 143(3), 1223-1238. https://doi.org/10.1007/s12011-011-8972-6
  • Văruţ, R. M., Melinte, P. R., Pîrvu, A. S., Gîngu, O., Sima, G., Oancea, C. N., … & Neamţu, J. (2020). Calcium fructoborate coating of titanium-hydroxyapatite implants by chemisorption deposition improves implant osseointegration in the femur of New Zealand White rabbit experimental model. Romanian Journal of Morphology and Embryology, 61(4), 1235-1247. https://doi.org/10.47162/RJME.61.4.25
  • Scorei, I. D., & Scorei, R. I. (2013). Calcium fructoborate helps control inflammation associated with diminished bone health. Biological Trace Element Research, 155(3), 315-321. https://doi.org/10.1007/s12011-013-9800-y
  • Marone, P. A., Heimbach, J. T., Nemzer, B., & Hunter, J. M. (2016). Subchronic and genetic safety evaluation of a calcium fructoborate in rats. Food and Chemical Toxicology, 95, 75-88. https://doi.org/10.1016/j.fct.2016.06.021
  • Harmanci, S., Dutta, A., Cesur, S., Sahin, A., Gunduz, O., Kalaskar, D. M., & Ustundag, C. B. (2022). Production of 3D printed bi-layer and tri-layer sandwich scaffolds with polycaprolactone and poly (vinyl alcohol)-metformin towards diabetic wound healing. Polymers, 14(23), 5306. https://doi.org/10.3390/polym14235306
  • Saeed, S. M., Mirzadeh, H., Zandi, M., & Barzin, J. (2017). Designing and fabrication of curcumin loadedPCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Progress in Biomaterials, 6(1-2), 39-48. https://doi.org/10.1007/s40204-017-0062-1
  • Ghiyasi, Y., Salahi, E., & Esfahani, H. (2021). Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Materials Today Communications, 26, 102163. https://doi.org/10.1016/j. mtcomm.2021.102163
  • Govender, M., Indermun, S., Kumar, P., Choonara, Y. E., & Pillay, V. (2018). 3D printed, PVA-PAA hydrogel loadedpolycaprolactone scaffold for the delivery of hydrophilic in-situ formed sodium indomethacin. Materials, 11(6), 1006. https://doi.org/10.3390/ma11061006
  • Dvorakova, J., Wiesnerova, L., Chocholata, P., Kulda, V., Landsmann, L., Cedikova, M., … & Babuska, V. (2023). Human cells with osteogenic potential in bone tissue research. BioMedical Engineering OnLine, 22(1), 33. https://doi.org/10.1186/s12938-023-01096-w
  • Arpornmaeklong, P., Suwatwirote, N., Pripatnanont, P., & Oungbho, K. (2007). Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. International Journal of Oral and Maxillofacial Surgery, 36(4), 328-337. https://doi.org/10.1016/j.ijom.2006.09.023
  • Ratnayake, J. T. B., Gould, M. L., Shavandi, A., Mucalo, M., & Dias, G. J. (2017). Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(5), 1054-1062. https://doi.org/10.1002/jbm.b.33644
  • Teixeira, L. N., Crippa, G. E., Lefebvre, L.-P., De Oliveira, P. T., Rosa, A. L., & Beloti, M. M. (2012). The influence of pore size on osteoblast phenotype expression in cultures grown on porous titanium. International Journal of Oral and Maxillofacial Surgery, 41(9), 1097-1101. https://doi.org/10.1016/j.ijom.2012.02.020
  • Lee, S. J., Choi, J. S., Park, K. S., Khang, G., Lee, Y. M., & Lee, H. B. (2004). Response of MG63 osteoblastlike cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 25(19), 4699-4707. https://doi.org/10.1016/j.biomaterials.2003.11.034
  • Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381-388. https://doi.org/10.1016/j.jobcr.2019.10.003
  • Filipov, E., Angelova, L., Vig, S., Fernandes, M. H., Moreau, G., Lasgorceix, M., … & Daskalova, A. (2022). Investigating potential effects of ultra-short laser-textured porous poly-ε-caprolactone scaffolds on bacterial adhesion and bone cell metabolism. Polymers, 14(12), 2382. https://doi.org/10.3390/polym14122382
  • Melčová, V., Krobot, Š., Šindelář, J., Šebová, E., Rampichová, M. K., & Přikryl, R. (2024). The effect of surface roughness and wettability on the adhesion and proliferation of Saos-2 cells seeded on 3D printed poly(3- hydroxybutyrate)/polylactide (PHB/PLA) surfaces. Results in Surfaces and Interfaces, 16, 100271. https:// doi.org/10.1016/j.rsurfi.2024.100271
  • Rotaru, P., Scorei, R., Hărăbor, A., & Dumitru, M. D. (2010). Thermal analysis of a calcium fructoborate sample. Thermochimica Acta, 506(1-2), 8-13. https://doi.org/10.1016/j.tca.2010.04.006
  • Lan, W., Zhang, X., Xu, M., Zhao, L., Huang, D., Wei, X., & Chen, W. (2019). Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Advances, 9(67), 38998-39010. https://doi.org/10.1039/C9RA08569F
  • Yoshioka, T., Kamada, F., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Structural changes and biodegradation of PLLA, PCL, and PLGA sponges during in vitro incubation. Polymer Engineering & Science, 50(10), 1895-1903. https://doi.org/10.1002/pen.21714
  • Waresindo, W. X., Luthfianti, H. R., Edikresnha, D., Suciati, T., Noor, F. A., & Khairurrijal, K. (2021). A freezethaw PVA hydrogel loaded with guava leaf extract: physical and antibacterial properties. RSC Advances, 11(48), 30156-30171. https://doi.org/10.1039/D1RA04092H
  • Wu, F., Gao, J., Xiang, Y., & Yang, J. (2023). Enhanced mechanical properties of PVA hydrogel by lowtemperature segment self-assembly vs. freeze-thaw cycles. Polymers, 15(18), 3782. https://doi.org/10.3390/polym15183782
  • Lotfipour, F., Alami-Milani, M., Salatin, S., Hadavi, A., & Jelvehgari, M. (2019). Freeze-thaw-induced crosslinked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization. Research in Pharmaceutical Sciences, 14(2), 175. https://doi.org/10.4103/1735-5362.253365
  • Adelnia, H., Ensandoost, R., Shebbrin Moonshi, S., Gavgani, J. N., Vasafi, E. I., & Ta, H. T. (2022). Freeze/ thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 164, 110974. https://doi.org/10.1016/j.eurpolymj.2021.110974
  • Zhou, X., Hou, C., Chang, T.-L., Zhang, Q., & Liang, J. F. (2020). Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids and Surfaces B: Biointerfaces, 187, 110645. https://doi.org/10.1016/j.colsurfb.2019.110645
  • Della Pepa, G. (2016). Microelements for bone boost: the last but not the least. Clinical Cases in Mineral and Bone Metabolism. https://doi.org/10.11138/ccmbm/2016.13.3.181
  • Decker, S., Arango-Ospina, M., Rehder, F., Moghaddam, A., Simon, R., Merle, C., … & Westhauser, F. (2022). In vitro and in ovo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Scientific Reports, 12(1), 8510. https://doi.org/10.1038/s41598-022-12430-y
  • Uzunçakmak, S. K. (2023). Sıçanlarda borik asit, kalsiyum fruktoborat ve potasyum bor sitratın kemik sağlığı ve sistemik inflamatuvar belirteçler üzerine etkisi. Bor Dergisi, 8(1), 9-15. https://doi.org/10.30728/BORON.1142574
  • Prosecká, E., Buzgo, M., Rampichová, M., Kocourek, T., Kochová, P., Vysloužilová, L., … & Amler, E. (2012). Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. Journal of Biomedicine and Biotechnology, 2012, 1-10. https://doi.org/10.1155/2012/428503
  • Mahalingam, S., Bayram, C., Gultekinoglu, M., Ulubayram, K., Homer-Vanniasinkam, S., & Edirisinghe, M. (2021). Co-axial gyro-spinning of PCL/PVA/ha coresheath fibrous scaffolds for bone tissue engineering. Macromolecular Bioscience, 21(10). https://doi.org/10.1002/mabi.202100177
  • Ebrahimi, L., Farzin, A., Ghasemi, Y., Alizadeh, A., Goodarzi, A., Basiri, A., … & Ai, J. (2021). Metforminloaded PCL/PVA fibrous scaffold preseeded with human endometrial stem cells for effective guided bone regeneration membranes. ACS Biomaterials Science & Engineering, 7(1), 222-231. https://doi.org/10.1021/acsbiomaterials.0c00958
  • [Uma Maheshwari, S., Samuel, V. K., & Nagiah, N. (2014). Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceramics International, 40(6), 8469-8477. https://doi.org/10.1016/j.ceramint.2014.01.058
  • Pattanashetti, N. A., Achari, D. D., Torvi, A. I., Doddamani, R. V., & Kariduraganavar, M. Y. (2020). Development of multilayered nanofibrous scaffolds with PCL and PVA:NaAlg using electrospinning technique for bone tissue regeneration. Materialia, 12, 100826. https://doi.org/10.1016/j.mtla.2020.100826

Kemik doku mühendisliği için kalsiyum fruktoboratın bölgesel salımına yönelik PCL/PVA/PCL taşıyıcı geliştirilmesi

Yıl 2024, , 143 - 152, 31.12.2024
https://doi.org/10.30728/boron.1549809

Öz

Kalsiyum fruktoborat (CaFB), bor ve kalsiyum içeriğinin kemik sağlığını, oluşumunu ve yenilenmesini desteklediği bilindiği için dikkat çekmektedir. Önceki çalışmalar CaFB'nin kemik sağlığı üzerinde olumlu etkisi olduğunu ve kemik benzeri özellikleri desteklediğini kanıtlamıştır. Bu bilgilerin ışığında, bölgesel CaFB salımı yapan hücre taşıyıcı, kemik dokusu kaybı durumunda kemik yenilenmesini iyileştirecektir. Bu çalışma, kemik dokusu iyileşmesini teşvik etmek için CaFB'nin kontrollü lokal salımını yapabilen, katman katman polimerik bir sünger tasarlamayı amaçlamaktadır. CaFB'nin Saos-2 hücre hattının hücre canlılığı üzerindeki doza bağlı etkisi in vitro olarak araştırılmıştır. Polimerik taşıyıcının katman katman yapısı, 7 günlük inkübasyonun ardından %33,9±7,4 salımı gerçekleşen CaFB'nin kontrollü salımını desteklemiştir. 31,25 µg/mL konsantrasyonundaki CaFB, 1 ve 4 günlük inkübasyondan sonra Saos-2 hücre canlılığını %174,7±24,1 ve %127,7±8,7'ye kadar iyileştirmeyi başarmıştır. 7 günlük inkübasyondan sonra 250, 125, 62,5 ve 31,25 µg/mL konsantrasyondaki CaFB dozu hücre canlılığını %194,3±47,7, 155,3±17,7, 149,4±5,4 ve 132,5±13,3'e kadar arttırmıştır. PCL/PVA/PCL taşıyıcı hücrelerin canlılığını 7 gün boyunca desteklemiş ve taşıyıcının biyouyumlu olduğu gösterilmiştir. Bu çalışmanın sonuçları, CaFB'nin kemik doku rejenerasyonunu iyileştirmek için bir taşıyıcı sistemi içerisinde lokal olarak uygulanabilecek potansiyel bir bileşik olduğunu göstermiştir.

Kaynakça

  • Rondanelli, M., Faliva, M. A., Peroni, G., Infantino, V., Gasparri, C., Iannello, G., … & Tartara, A. (2020). Pivotal role of boron supplementation on bone health: A narrative review. Journal of Trace Elements in Medicine and Biology, 62, 126577. https://doi.org/10.1016/J. JTEMB.2020.126577
  • Mahdavi, R., Belgheisi, G., Haghbin-Nazarpak, M., Omidi, M., Khojasteh, A., & Solati-Hashjin, M. (2020). Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Journal of Materials Science: Materials in Medicine, 31(11), 97. https://doi.org/10.1007/s10856-020-06430-5
  • Miljkovic, D., Miljkovic, N., & McCarty, M. F. (2004). Up-regulatory impact of boron on vitamin D function- Does it reflect inhibition of 24-hydroxylase? Medical Hypotheses, 63(6), 1054-1056. https://doi.org/10.1016/j.mehy.2003.12.053
  • Hakki, S. S., Dundar, N., Kayis, S. A., Hakki, E. E., Hamurcu, M., Kerimoglu, U., … & Nielsen, F. H. (2013). Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2), 148-153. https://doi.org/10.1016/J.JTEMB.2012.07.001
  • Armstrong, T. A., Spears, J. W., Crenshaw, T. D., & Nielsen, F. H. (2000). Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. The Journal of Nutrition, 130(10), 2575-2581. https://doi.org/10.1093/jn/130.10.2575
  • Naghii, M. R., Torkaman, G., & Mofid, M. (2006). Effects of boron and calcium supplementation on mechanical properties of bone in rats. BioFactors, 28(3-4), 195-201. https://doi.org/10.1002/biof.5520280306
  • Nielsen, F. H., & Stoecker, B. J. (2009). Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. Journal of Trace Elements in Medicine and Biology, 23(3), 195-203. https://doi.org/10.1016/j.jtemb.2009.03.003
  • Ying, X., Cheng, S., Wang, W., Lin, Z., Chen, Q., Zhang, W., … & Lu, C. Z. (2011). Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biological Trace Element Research, 144(1-3), 306-315. https://doi.org/10.1007/s12011-011-9094-x
  • Hakki, S. S., Bozkurt, B. S., & Hakki, E. E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4), 243-250. https://doi.org/10.1016/j.jtemb.2010.03.003
  • Capati, M. L. F., Nakazono, A., Igawa, K., Ookubo, K., Yamamoto, Y., Yanagiguchi, K., … & Hayashi, Y. (2016). Boron accelerates cultured osteoblastic cell activity through calcium flux. Biological Trace Element Research, 174(2), 300-308. https://doi.org/10.1007/s12011-016-0719-y
  • Seydibeyoğlu, M. Ö., Caka, M., Ulucan-Karnak, F., Onak, G., Uzel, A., Ozyildiz, F., & Karaman, O. (2021). Bone cement formulation with reduced heating of bone cement resin. Journal of Boron, 6(2), 274-282. https://doi.org/10.30728/BORON.835919
  • Uysal, İ., Yılmaz, B., & Evis, Z. (2020). Boron doped hydroxapatites in biomedical applications. Journal of Boron, 5(4), 199-208. https://doi.org/10.30728/BORON.734804
  • Aki, D., Ulag, S., Unal, S., Sengor, M., Ekren, N., Lin, C. C., … & Gunduz, O. (2020). 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Materials & Design, 196, 109094. https://doi.org/10.1016/J.MATDES.2020.109094
  • Butan, S., Filimon, V., & Bounegru, A. V. (2024). Human health impact and advanced chemical analysis of fructoborates: A comprehensive review. Chemical Papers, 78(9), 5151-5167. https://doi.org/10.1007/S11696-024-03428-Z/FIGURES/6
  • Wagner, C. C., Ferraresi Curotto, V., Pis Diez, R., & Baran, E. J. (2008). Experimental and theoretical studies of calcium fructoborate. Biological Trace Element Research, 122(1), 64-72. https://doi.org/10.1007/s12011-007-8060-0
  • Capozzi, A., Scambia, G., & Lello, S. (2020). Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas, 140, 55-63. https://doi.org/10.1016/J.MATURITAS.2020.05.020
  • Marie, P. J. (2010). The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone, 46(3), 571-576. https://doi.org/10.1016/j.bone.2009.07.082
  • Chai, Y. C., Carlier, A., Bolander, J., Roberts, S. J., Geris, L., Schrooten, J., … & Luyten, F. P. (2012). Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomaterialia, 8(11), 3876-3887. https://doi.org/10.1016/j.actbio.2012.07.002
  • Mogoşanu, G. D., Biţă, A., Bejenaru, L. E., Bejenaru, C., Croitoru, O., Rău, G., … & Scorei, R. I. (2016). Calcium fructoborate for bone and cardiovascular health. Biological Trace Element Research, 172(2), 277-281. https://doi.org/10.1007/s12011-015-0590-2
  • Turck, D., Castenmiller, J., De Henauw, S., Hirsch- Ernst, K. I., Kearney, J., Maciuk, A., … & Knutsen, H. K. (2021). Safety of calcium fructoborate as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(7). https://doi.org/10.2903/j.efsa.2021.6661
  • Manda, D., Popa, O., Vladoiu, S., & Dumitrache, C. (2009). Calcium fructoborate effect on osteoblast mineralization in vitro. Bone, 44, S298-S299. https://doi.org/10.1016/J.BONE.2009.03.545
  • Scorei, R. I., & Rotaru, P. (2011). Calcium fructoborate-Potential anti-inflammatory agent. Biological Trace Element Research, 143(3), 1223-1238. https://doi.org/10.1007/s12011-011-8972-6
  • Văruţ, R. M., Melinte, P. R., Pîrvu, A. S., Gîngu, O., Sima, G., Oancea, C. N., … & Neamţu, J. (2020). Calcium fructoborate coating of titanium-hydroxyapatite implants by chemisorption deposition improves implant osseointegration in the femur of New Zealand White rabbit experimental model. Romanian Journal of Morphology and Embryology, 61(4), 1235-1247. https://doi.org/10.47162/RJME.61.4.25
  • Scorei, I. D., & Scorei, R. I. (2013). Calcium fructoborate helps control inflammation associated with diminished bone health. Biological Trace Element Research, 155(3), 315-321. https://doi.org/10.1007/s12011-013-9800-y
  • Marone, P. A., Heimbach, J. T., Nemzer, B., & Hunter, J. M. (2016). Subchronic and genetic safety evaluation of a calcium fructoborate in rats. Food and Chemical Toxicology, 95, 75-88. https://doi.org/10.1016/j.fct.2016.06.021
  • Harmanci, S., Dutta, A., Cesur, S., Sahin, A., Gunduz, O., Kalaskar, D. M., & Ustundag, C. B. (2022). Production of 3D printed bi-layer and tri-layer sandwich scaffolds with polycaprolactone and poly (vinyl alcohol)-metformin towards diabetic wound healing. Polymers, 14(23), 5306. https://doi.org/10.3390/polym14235306
  • Saeed, S. M., Mirzadeh, H., Zandi, M., & Barzin, J. (2017). Designing and fabrication of curcumin loadedPCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Progress in Biomaterials, 6(1-2), 39-48. https://doi.org/10.1007/s40204-017-0062-1
  • Ghiyasi, Y., Salahi, E., & Esfahani, H. (2021). Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Materials Today Communications, 26, 102163. https://doi.org/10.1016/j. mtcomm.2021.102163
  • Govender, M., Indermun, S., Kumar, P., Choonara, Y. E., & Pillay, V. (2018). 3D printed, PVA-PAA hydrogel loadedpolycaprolactone scaffold for the delivery of hydrophilic in-situ formed sodium indomethacin. Materials, 11(6), 1006. https://doi.org/10.3390/ma11061006
  • Dvorakova, J., Wiesnerova, L., Chocholata, P., Kulda, V., Landsmann, L., Cedikova, M., … & Babuska, V. (2023). Human cells with osteogenic potential in bone tissue research. BioMedical Engineering OnLine, 22(1), 33. https://doi.org/10.1186/s12938-023-01096-w
  • Arpornmaeklong, P., Suwatwirote, N., Pripatnanont, P., & Oungbho, K. (2007). Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. International Journal of Oral and Maxillofacial Surgery, 36(4), 328-337. https://doi.org/10.1016/j.ijom.2006.09.023
  • Ratnayake, J. T. B., Gould, M. L., Shavandi, A., Mucalo, M., & Dias, G. J. (2017). Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(5), 1054-1062. https://doi.org/10.1002/jbm.b.33644
  • Teixeira, L. N., Crippa, G. E., Lefebvre, L.-P., De Oliveira, P. T., Rosa, A. L., & Beloti, M. M. (2012). The influence of pore size on osteoblast phenotype expression in cultures grown on porous titanium. International Journal of Oral and Maxillofacial Surgery, 41(9), 1097-1101. https://doi.org/10.1016/j.ijom.2012.02.020
  • Lee, S. J., Choi, J. S., Park, K. S., Khang, G., Lee, Y. M., & Lee, H. B. (2004). Response of MG63 osteoblastlike cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 25(19), 4699-4707. https://doi.org/10.1016/j.biomaterials.2003.11.034
  • Dwivedi, R., Kumar, S., Pandey, R., Mahajan, A., Nandana, D., Katti, D. S., & Mehrotra, D. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381-388. https://doi.org/10.1016/j.jobcr.2019.10.003
  • Filipov, E., Angelova, L., Vig, S., Fernandes, M. H., Moreau, G., Lasgorceix, M., … & Daskalova, A. (2022). Investigating potential effects of ultra-short laser-textured porous poly-ε-caprolactone scaffolds on bacterial adhesion and bone cell metabolism. Polymers, 14(12), 2382. https://doi.org/10.3390/polym14122382
  • Melčová, V., Krobot, Š., Šindelář, J., Šebová, E., Rampichová, M. K., & Přikryl, R. (2024). The effect of surface roughness and wettability on the adhesion and proliferation of Saos-2 cells seeded on 3D printed poly(3- hydroxybutyrate)/polylactide (PHB/PLA) surfaces. Results in Surfaces and Interfaces, 16, 100271. https:// doi.org/10.1016/j.rsurfi.2024.100271
  • Rotaru, P., Scorei, R., Hărăbor, A., & Dumitru, M. D. (2010). Thermal analysis of a calcium fructoborate sample. Thermochimica Acta, 506(1-2), 8-13. https://doi.org/10.1016/j.tca.2010.04.006
  • Lan, W., Zhang, X., Xu, M., Zhao, L., Huang, D., Wei, X., & Chen, W. (2019). Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Advances, 9(67), 38998-39010. https://doi.org/10.1039/C9RA08569F
  • Yoshioka, T., Kamada, F., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Structural changes and biodegradation of PLLA, PCL, and PLGA sponges during in vitro incubation. Polymer Engineering & Science, 50(10), 1895-1903. https://doi.org/10.1002/pen.21714
  • Waresindo, W. X., Luthfianti, H. R., Edikresnha, D., Suciati, T., Noor, F. A., & Khairurrijal, K. (2021). A freezethaw PVA hydrogel loaded with guava leaf extract: physical and antibacterial properties. RSC Advances, 11(48), 30156-30171. https://doi.org/10.1039/D1RA04092H
  • Wu, F., Gao, J., Xiang, Y., & Yang, J. (2023). Enhanced mechanical properties of PVA hydrogel by lowtemperature segment self-assembly vs. freeze-thaw cycles. Polymers, 15(18), 3782. https://doi.org/10.3390/polym15183782
  • Lotfipour, F., Alami-Milani, M., Salatin, S., Hadavi, A., & Jelvehgari, M. (2019). Freeze-thaw-induced crosslinked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization. Research in Pharmaceutical Sciences, 14(2), 175. https://doi.org/10.4103/1735-5362.253365
  • Adelnia, H., Ensandoost, R., Shebbrin Moonshi, S., Gavgani, J. N., Vasafi, E. I., & Ta, H. T. (2022). Freeze/ thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 164, 110974. https://doi.org/10.1016/j.eurpolymj.2021.110974
  • Zhou, X., Hou, C., Chang, T.-L., Zhang, Q., & Liang, J. F. (2020). Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids and Surfaces B: Biointerfaces, 187, 110645. https://doi.org/10.1016/j.colsurfb.2019.110645
  • Della Pepa, G. (2016). Microelements for bone boost: the last but not the least. Clinical Cases in Mineral and Bone Metabolism. https://doi.org/10.11138/ccmbm/2016.13.3.181
  • Decker, S., Arango-Ospina, M., Rehder, F., Moghaddam, A., Simon, R., Merle, C., … & Westhauser, F. (2022). In vitro and in ovo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Scientific Reports, 12(1), 8510. https://doi.org/10.1038/s41598-022-12430-y
  • Uzunçakmak, S. K. (2023). Sıçanlarda borik asit, kalsiyum fruktoborat ve potasyum bor sitratın kemik sağlığı ve sistemik inflamatuvar belirteçler üzerine etkisi. Bor Dergisi, 8(1), 9-15. https://doi.org/10.30728/BORON.1142574
  • Prosecká, E., Buzgo, M., Rampichová, M., Kocourek, T., Kochová, P., Vysloužilová, L., … & Amler, E. (2012). Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. Journal of Biomedicine and Biotechnology, 2012, 1-10. https://doi.org/10.1155/2012/428503
  • Mahalingam, S., Bayram, C., Gultekinoglu, M., Ulubayram, K., Homer-Vanniasinkam, S., & Edirisinghe, M. (2021). Co-axial gyro-spinning of PCL/PVA/ha coresheath fibrous scaffolds for bone tissue engineering. Macromolecular Bioscience, 21(10). https://doi.org/10.1002/mabi.202100177
  • Ebrahimi, L., Farzin, A., Ghasemi, Y., Alizadeh, A., Goodarzi, A., Basiri, A., … & Ai, J. (2021). Metforminloaded PCL/PVA fibrous scaffold preseeded with human endometrial stem cells for effective guided bone regeneration membranes. ACS Biomaterials Science & Engineering, 7(1), 222-231. https://doi.org/10.1021/acsbiomaterials.0c00958
  • [Uma Maheshwari, S., Samuel, V. K., & Nagiah, N. (2014). Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceramics International, 40(6), 8469-8477. https://doi.org/10.1016/j.ceramint.2014.01.058
  • Pattanashetti, N. A., Achari, D. D., Torvi, A. I., Doddamani, R. V., & Kariduraganavar, M. Y. (2020). Development of multilayered nanofibrous scaffolds with PCL and PVA:NaAlg using electrospinning technique for bone tissue regeneration. Materialia, 12, 100826. https://doi.org/10.1016/j.mtla.2020.100826
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ali Deniz Dalgıç 0000-0003-2904-1204

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 13 Eylül 2024
Kabul Tarihi 14 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dalgıç, A. D. (2024). Development of PCL/PVA/PCL scaffold for local delivery of calcium fructoborate for bone tissue engineering. Journal of Boron, 9(4), 143-152. https://doi.org/10.30728/boron.1549809