Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 1 - 7, 26.03.2018
https://doi.org/10.30728/boron.334948

Öz

Kaynakça

  • [1] Couchaux G., Barth D., Jacquin M., Faraj A., Grandjean J., Kinetics of carbon dioxide with amines. I. Stopped-flow studies in aqueous solutions. A review, Oil Gas Sci Technol – Rev d’IFP Energies Nouv, 69, 865–884, 2014.
  • [2] Kang S.-P., Lee J., Seo Y., Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure, Chem Eng J, 218,126–132, 2013.
  • [3] Smith K.H., Anderson C.J., Tao W., Endo K., Mumford K.A., Kentish S.E., et al., Pre-combustion capture of CO2-Results from solvent absorption pilot plant trials using 30wt% potassium carbonate and boric acid promoted potassium carbonate solvent, Int J Greenh Gas Control, 10,64–73,2012.
  • [4] Babu P., Linga P., Kumar R., Englezos P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture, Energy,85,261–279, 2015.
  • [5] Plasynski S.I., Litynski J.T., McIlvried H.G., Srivastava R.D., Progress and new developments in carbon capture and storage, CRC Crit Rev Plant Sci, 28, 123–138, 2009.
  • [6] Rubin E.S., Mantripragada H., Marks A., Versteeg P., Kitchin J., The outlook for improved carbon capture technology, Prog Energy Combust Sci, 38, 630–671, 2012.
  • [7] de Mello L.F., Gobbo R., Moure G.T., Miracca I., Oxy-combustion technology development for fluid catalytic crackers (FCC) – large pilot scale demonstration, Energy Procedia, 37, 7815–7824, 2013.
  • [8] Thiruvenkatachari R., Su S., An H., Yu X.X., Post combustion CO2 capture by carbon fibre monolithic adsorbents, Prog Energy Combust Sci, 35, 438–455, 2009.
  • [9] Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C., Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem Eng Res Des, 89, 1609–1624, 2011.
  • [10] Liu H., Sema T., Liang Z., Fu K., Idem R., Na Y., et al., CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique, Sep Purif Technol, 136, 81–87, 2014.
  • [11] Niu Z., Guo Y., Zeng Q., Lin W., Experimental studies and rate-based process simulations of CO2 absorption with aqueous ammonia solutions, Ind Eng Chem Res, 51, 5309–5319, 2012.
  • [12] Kumar S., Cho J.H., Moon I., Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review, Int J Greenh Gas Control, 20, 87–116, 2014.
  • [13] Budzianowski W.M., Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review, Int J Glob Warm, 7, 184-225, 2015.
  • [14] Pérez E.R., Santos R.H.A., Gambardella M.T.P., de Macedo L.G.M., Rodrigues-Filho U.P., Launay J.-C., et al., Activation of carbon dioxide by bicyclic amidines, J Org Chem, 69, 8005–8011, 2004.
  • [15] Ochiai B., Yokota K., Fujii A., Nagai D., Endo T., Reversible trap−release of CO2 by polymers bearing DBU and DBN moieties, Macromolecules, 41, 1229–1236, 2008.
  • [16] Yamada H., Matsuzaki Y., Higashii T., Kazama S., Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-Amino-2-methyl-1-propanol using a continuum solvation model, J Phys Chem A, 115, 3079–3086, 2011.
  • [17] Wang Y., Han Q., Wen H., Theoretical discussion on the mechanism of binding CO2 by DBU and alcohol, Mol Simul, 39, 822–827, 2013.
  • [18] Tankal H., Orhan O.Y., Alper E., Ozdogan T., Kayı H., Experimental and theoretical investigation of the reaction between CO2 and carbon dioxide binding organic liquids, Turk J Chem, 40, 706–719, 2016.
  • [19] Yuksel Orhan O., Tankal H., Kayı H., Alper E., Kinetics of CO2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies, Int J Greenh Gas Control, 49, 379–386, 2016.
  • [20] Orhan O.Y., Tankal H., Kayı H., Alper E., Innovative carbon dioxide-capturing organic solvent: Reaction mechanism and kinetics, Chem Eng Technol, 40, 737–744, 2017.
  • [21] Eickmeyer A., Method for removing acid gases from gaseous mixtures, US Patent No: US3851041A, 1974. [22] Ahmadi M., Gomes V.G., Ngian K., Advanced modelling in performance optimization for reactive separation in industrial CO2 removal, Sep Purif Technol, 63, 107–115, 2008.
  • [23] Ghosh U.K., Kentish S.E., Stevens G.W., Absorption of carbon dioxide into aqueous potassium carbonate promoted by boric acid, Energy Procedia, 1, 1075–1081, 2009.
  • [24] Endo K., Nguyen Q.S., Kentish S.E., Stevens G.W., The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate, Fluid Phase Equilib, 309, 109–113, 2011.
  • [25] Borhani T.N.G., Azarpour A., Akbari V., Wan Alwi S.R., Manan Z.A., CO2 capture with potassium carbonate solutions: A state-of-the-art review, Int J Greenh Gas Control, 41, 142–162, 2015.
  • [26] Guo D., Thee H., da Silva G., Chen J., Fei W., Kentish S., et al., Borate-catalysed carbon dioxide hydration via the carbonic andyrase mechanism, Environ Sci Technol, 45, 4802–4807, 2011.
  • [27] Kayı H., Kaiser R.I., Head J.D., A computational study on the structures of methylamine-carbon dioxide-water clusters: evidence for the barrier free formation of the methylcarbamic acid zwitterion (CH3NH2+COO-) in interstellar water ices, Phys Chem Chem Phys, 13, 11083–11098, 2011.
  • [28] Becke A.,D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A Gen Phys, 38, 3098–3100, 1988.
  • [29] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B Condens Matter, 37, 785–789, 1988.
  • [30] Becke A.D., A new mixing of Hartree–Fock and local density‐functional theories, J Chem Phys, 98, 1372–1377, 1993.
  • [31] Becke A.D., Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 98, 5648–5652, 1993.
  • [32] Hariharan P.C., Pople J.A., Influence of polarization functions on MO hydrogenation energies, Theor Chim Acta, 28, 213–222, 1973.
  • [33] Miertuš S., Scrocco E., Tomasi J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem Phys, 55, 117–129, 1981.
  • [34] Miertus̃ S., Tomasi J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem Phys, 65, 239–245, 1982.
  • [35] Pascual-ahuir J.L., Silla E., Tuñon I., GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, J Comput Chem, 15, 1127–1138, 1994.
  • [36] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132:154104. doi:10.1063/1.3382344.
  • [37] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al., Gaussian 09, Rev. D.01., Wallingford CT, Gaussian Inc., 2013.
  • [38] Dennington R,, Keith T,, Millam J., GaussView, Ver. 5.0.9., Shawnee Mission KS, Semichem Inc., 2009.
  • [39] Eyring H., The activated complex in chemical reactions, J Chem Phys, 445, 107–115, 1935.
  • [40] Supap T., Idem R., Tontiwachwuthikul P., Saiwan C., Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations, Ind Eng Chem Res, 45, 2437–2451, 2006.

Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism

Yıl 2018, , 1 - 7, 26.03.2018
https://doi.org/10.30728/boron.334948

Öz

Hitherto, boric is suggested and used as a promoter or catalyst for carbon dioxide capture in various chemical absorption reactions, such as, absorption by aqueous potassium carbonate solution to increase mass transfer rate. But in this study, a single step termolecular reaction mechanism is suggested for the chemical absorption of carbon dioxide directly by boric acid and water. The reaction thermochemistry and reaction kinetics for termolecular mechanism are investigated by using density functional theory calculations at the B3LYP/6-31G(d) level of theory by taking into account of the implicit solvent effects of water through

the polarizable continuum model and dispersion corrections. The findings obtained from theoretical calculations indicate that it is possible to capture carbon dioxide with boric acid in the form of B(OH)2OCOOH.

Kaynakça

  • [1] Couchaux G., Barth D., Jacquin M., Faraj A., Grandjean J., Kinetics of carbon dioxide with amines. I. Stopped-flow studies in aqueous solutions. A review, Oil Gas Sci Technol – Rev d’IFP Energies Nouv, 69, 865–884, 2014.
  • [2] Kang S.-P., Lee J., Seo Y., Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure, Chem Eng J, 218,126–132, 2013.
  • [3] Smith K.H., Anderson C.J., Tao W., Endo K., Mumford K.A., Kentish S.E., et al., Pre-combustion capture of CO2-Results from solvent absorption pilot plant trials using 30wt% potassium carbonate and boric acid promoted potassium carbonate solvent, Int J Greenh Gas Control, 10,64–73,2012.
  • [4] Babu P., Linga P., Kumar R., Englezos P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture, Energy,85,261–279, 2015.
  • [5] Plasynski S.I., Litynski J.T., McIlvried H.G., Srivastava R.D., Progress and new developments in carbon capture and storage, CRC Crit Rev Plant Sci, 28, 123–138, 2009.
  • [6] Rubin E.S., Mantripragada H., Marks A., Versteeg P., Kitchin J., The outlook for improved carbon capture technology, Prog Energy Combust Sci, 38, 630–671, 2012.
  • [7] de Mello L.F., Gobbo R., Moure G.T., Miracca I., Oxy-combustion technology development for fluid catalytic crackers (FCC) – large pilot scale demonstration, Energy Procedia, 37, 7815–7824, 2013.
  • [8] Thiruvenkatachari R., Su S., An H., Yu X.X., Post combustion CO2 capture by carbon fibre monolithic adsorbents, Prog Energy Combust Sci, 35, 438–455, 2009.
  • [9] Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C., Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem Eng Res Des, 89, 1609–1624, 2011.
  • [10] Liu H., Sema T., Liang Z., Fu K., Idem R., Na Y., et al., CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique, Sep Purif Technol, 136, 81–87, 2014.
  • [11] Niu Z., Guo Y., Zeng Q., Lin W., Experimental studies and rate-based process simulations of CO2 absorption with aqueous ammonia solutions, Ind Eng Chem Res, 51, 5309–5319, 2012.
  • [12] Kumar S., Cho J.H., Moon I., Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review, Int J Greenh Gas Control, 20, 87–116, 2014.
  • [13] Budzianowski W.M., Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review, Int J Glob Warm, 7, 184-225, 2015.
  • [14] Pérez E.R., Santos R.H.A., Gambardella M.T.P., de Macedo L.G.M., Rodrigues-Filho U.P., Launay J.-C., et al., Activation of carbon dioxide by bicyclic amidines, J Org Chem, 69, 8005–8011, 2004.
  • [15] Ochiai B., Yokota K., Fujii A., Nagai D., Endo T., Reversible trap−release of CO2 by polymers bearing DBU and DBN moieties, Macromolecules, 41, 1229–1236, 2008.
  • [16] Yamada H., Matsuzaki Y., Higashii T., Kazama S., Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-Amino-2-methyl-1-propanol using a continuum solvation model, J Phys Chem A, 115, 3079–3086, 2011.
  • [17] Wang Y., Han Q., Wen H., Theoretical discussion on the mechanism of binding CO2 by DBU and alcohol, Mol Simul, 39, 822–827, 2013.
  • [18] Tankal H., Orhan O.Y., Alper E., Ozdogan T., Kayı H., Experimental and theoretical investigation of the reaction between CO2 and carbon dioxide binding organic liquids, Turk J Chem, 40, 706–719, 2016.
  • [19] Yuksel Orhan O., Tankal H., Kayı H., Alper E., Kinetics of CO2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies, Int J Greenh Gas Control, 49, 379–386, 2016.
  • [20] Orhan O.Y., Tankal H., Kayı H., Alper E., Innovative carbon dioxide-capturing organic solvent: Reaction mechanism and kinetics, Chem Eng Technol, 40, 737–744, 2017.
  • [21] Eickmeyer A., Method for removing acid gases from gaseous mixtures, US Patent No: US3851041A, 1974. [22] Ahmadi M., Gomes V.G., Ngian K., Advanced modelling in performance optimization for reactive separation in industrial CO2 removal, Sep Purif Technol, 63, 107–115, 2008.
  • [23] Ghosh U.K., Kentish S.E., Stevens G.W., Absorption of carbon dioxide into aqueous potassium carbonate promoted by boric acid, Energy Procedia, 1, 1075–1081, 2009.
  • [24] Endo K., Nguyen Q.S., Kentish S.E., Stevens G.W., The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate, Fluid Phase Equilib, 309, 109–113, 2011.
  • [25] Borhani T.N.G., Azarpour A., Akbari V., Wan Alwi S.R., Manan Z.A., CO2 capture with potassium carbonate solutions: A state-of-the-art review, Int J Greenh Gas Control, 41, 142–162, 2015.
  • [26] Guo D., Thee H., da Silva G., Chen J., Fei W., Kentish S., et al., Borate-catalysed carbon dioxide hydration via the carbonic andyrase mechanism, Environ Sci Technol, 45, 4802–4807, 2011.
  • [27] Kayı H., Kaiser R.I., Head J.D., A computational study on the structures of methylamine-carbon dioxide-water clusters: evidence for the barrier free formation of the methylcarbamic acid zwitterion (CH3NH2+COO-) in interstellar water ices, Phys Chem Chem Phys, 13, 11083–11098, 2011.
  • [28] Becke A.,D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A Gen Phys, 38, 3098–3100, 1988.
  • [29] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B Condens Matter, 37, 785–789, 1988.
  • [30] Becke A.D., A new mixing of Hartree–Fock and local density‐functional theories, J Chem Phys, 98, 1372–1377, 1993.
  • [31] Becke A.D., Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 98, 5648–5652, 1993.
  • [32] Hariharan P.C., Pople J.A., Influence of polarization functions on MO hydrogenation energies, Theor Chim Acta, 28, 213–222, 1973.
  • [33] Miertuš S., Scrocco E., Tomasi J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem Phys, 55, 117–129, 1981.
  • [34] Miertus̃ S., Tomasi J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem Phys, 65, 239–245, 1982.
  • [35] Pascual-ahuir J.L., Silla E., Tuñon I., GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, J Comput Chem, 15, 1127–1138, 1994.
  • [36] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132:154104. doi:10.1063/1.3382344.
  • [37] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al., Gaussian 09, Rev. D.01., Wallingford CT, Gaussian Inc., 2013.
  • [38] Dennington R,, Keith T,, Millam J., GaussView, Ver. 5.0.9., Shawnee Mission KS, Semichem Inc., 2009.
  • [39] Eyring H., The activated complex in chemical reactions, J Chem Phys, 445, 107–115, 1935.
  • [40] Supap T., Idem R., Tontiwachwuthikul P., Saiwan C., Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations, Ind Eng Chem Res, 45, 2437–2451, 2006.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Kayı

Yayımlanma Tarihi 26 Mart 2018
Kabul Tarihi 3 Kasım 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Kayı, H. (2018). Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism. Journal of Boron, 3(1), 1-7. https://doi.org/10.30728/boron.334948