Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 63 - 70, 05.07.2018
https://doi.org/10.30728/boron.343608

Öz

Kaynakça

  • [1] Eti Mine Works General Management, Project Report, Eskişehir/Turkey, 2013 (http://www.csb.gov.tr/db/ced/editordosya/Eti%20Maden%20Yeni%20Atik%20Baraji%20CED%20Raporu(2).pdf).
  • [2] Bentli T., Özdemir O., Çeük M. S., Ediz N., Bor atıkları ve değerlendirilme -stratejileri, The First International Boron Symposium, Kütahya, Turkey, 250-258, 2002 http://www.maden.org.tr/resimler/ekler/c4e a5258ef3fb3f_ek.pdf.
  • [3] Kavas K., Emrullahoğlu, Ö. F., Seydişehir kırmızı çamuru ve Kırka bor atıklannın endüstriyel hammadde olarak kullanımı, LButı Anadolu Hammadde Kaynakları Sempozyumu, TMMOB Jeoloji Mühendisleri Odası, İzmir, 216-225, 1999.
  • [4] Genç S., Sevinç V., Özşeker A., Çakı M., Etibank Kırka boraks işletmesi konsantratör atığının sır hammaddesi olarak değerlendirilmesi, 4. Seramik Kongresi. Türk Seramik Derneği Yayınları No: 20 Eds Turan, Kara&Pfltun, Eskişehir, 119-124, 1998.
  • [5] Kavas T., Christogerou A., Pontikes Y., Angelopoulos G. N., Valorisation of different types of boron-containing wastes for the production of lightweight aggregates, J. Hazard. Mater., 185 (2-3), 1381-1389, 2011.
  • [6] Özdemir M., Öztürk N. U., Utilization of clay wastes containing boron as cement additives, Cem. Concr. Res., 33 (10), 1659-1661, 2003.
  • [7] Sönmez E., Özdağ H., Özler A., Sümer G., Kırka boraks işletmesi atık killerinin seramik endüstrisinde kullanılabilirliğinin araştırılması, Türkiye 13. Madencilik Kongresi, TMMOB Maden Mühendisleri Odası Istanbul, 561-566, 1993.
  • [8] Sönmez E., Yorulmaz S., Kırka boraks işletmesi atık killerinin tuğla yapımında kullanılabilirliğinin araştırılması, Endüstriyel Hammaddeler Sempozyumu, TMMOB Maden Mühendisleri Odası, İzmir, 163-168, 1995.
  • [9] Ediz N, Özdag H., Kırka boraks işletmesi atık killerinin tuğla yapımında kullanılabilirliğinin araştırılması, TMMOB Madencilik Dergisi, Cilt 34, Sayı 4, Ankara, 27-34, 1995.
  • [10] Wang R. M., Zheng S. R., Zhen Y. P., Polymer Matrix Composites and Technology, Woodhead Publishing in Materials, 2011.
  • [11] Acikbas G., Gocmez H., Characterization and properties of industrial polymer matrix composite sanitarywares, Materials Testing, 59 (11-12), 1067-1074, 2017.
  • [12] Menezes R. R., Santana L. N. L., Neves and Ferreira H. C., Recycling of Mine Wastes as Ceramic Raw Materials: An Alternative to Avoid Environmental Contamination, Environmental Contamination, Dr. Jatin Srivastava (Ed.), InTech, 199-220, 2012.
  • [13] Ashori A., Hybrid composites from waste materials, J. Polym. Environ.,18, 65–70, 2010.
  • [14] Medupin R. O., Abubakre O. K., Ukoba O., Imoisili P. E., Mechanical properties of wood waste reinforced polymer matrix composites, Am. Chem. Sci. J. 3 (4), 507–513, 2013.
  • [15] Koleva M., Zheglova A., Fidancevska E., Vassilev V., Composites Containing Waste Materials, INTECH Open Access Publisher, Croatia, 2011.
  • [16] Sathiyamoorthy M., Thanappan S., Senthilkumar M., Utilization of waste rubber tires as an additional ingredient of concrete mixtures, Int. J. Eng. Res. Ind. Appl. 4 (I), 335–350, 2011.
  • [17] Tunsan M., The use of waste materials in asphalt concrete mixtures, Waste Manag. Res., 21 (2), 83–92, 2003.
  • [18] Calis Acikbas N., Acikbas G., Epoxy matrix composites containing urea formaldehyde waste particulate filler, waste and biomass valorization, 8, 669-678, 2017.
  • [19] Vassilev V., Fidancevska E., Milosevski M., Parvanov S., Milosevski D., Hristova-Vasileva T., Composites based on industrial wastes IV. Production of porous composites from Fe– Ni slag and waste glass. J. Univ. Chem. Technol. Metall., 42 (4), 369–376, 2007.
  • [20] Thomas C., Borges P. H. R., Panzera T. H., Cimentada A., Lombillo I., Epoxy composites containing CFRP powder wastes, Compos., B 59, 260–268, 2014.
  • [21] Acikbas G., Ozcan S., Calis Acikbas N., Production and characterization of a hybrid polymer matrix composite, Polym. Compos., 26 Haziran 2017.
  • [22] Acikbas G., Göçmez H., Polyester matrisli kompozit özeliklerine vitrifiye seramik sağlık gereci atık miktarının etkisi, APJES, 5 (3), 138-145, 2017.
  • [23] Acikbas G., Seramik sağlık gereçlerine alternatif polimer matrisli kompozit malzemelerin geliştirilmesi ve karakterizasyonu, Yayınlanmış Doktora Tezi, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya, Türkiye, 2016.
  • [24] Uygunoglu T., Gunes I., Brostow W., Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron, Mater. Res., 18 (6), 1188-1196, 2015.
  • [25] Uygunoglu T., Brostow W., Gunes I., Wear and friction of composites of an epoxy with boron containing wastes, Polímeros, 25 (3), 271-276, 2015.
  • [26] Kadiyala A. K., Bijwe J., Surface lubrication of graphite fabric reinforced epoxy composites with nano- and micro-sized hexagonal boron nitride, Wear, 301 (1-2), 2013.
  • [27] McCook N. L., Boesl B., Burris D. L., Sawyer W. G., Epoxy, ZnO, and PTFE nanocomposite: Friction and wear optimization, Tribol. Lett., 22 (3), 2006.
  • [28] Kurahattia R. V., Surendranatha, A. O., Kumar A., Ramesh V., Wadagerid C. S., Auradie V., Korif S. A., Dry sliding wear behaviour of epoxyreinforced with nano zro2 particles, Procedia Mater. Sci., 5, 274-280, 2014.
  • [29] Açıkbaş G., Çalış Açıkbaş N., İkizek E., Özel M., Eker A. S., Characterization of Green Epoxy Matrix Composites Filled with Ceramic Wastes, ISITES2014 2nd International symposium on innovative technologies in engineering and science proceeding book, Karabük, Turkey, 597–606, 18–20 June 2014.
  • [30] Basu B., Kalin M., Tribology of Ceramics and Composites: Materials Science Perspective, John Wiley & Sons, Inc., USA and American Ceramic Society, 2011.
  • [31] Xu, J. and Kato, K., Formation of tribochemical layer of ceramics sliding in water and its role for low friction, Wear, 245 (1–2), 61-75, 2000.
  • [32] Wimmer M. A., Sprecher C., Hauert R., Tager G., Fischer A., Tribochemical reaction on metal-on-metal hip joint bearings: A comparison between in-vitro and in-vivo results, Wear, 255, 1007-1014, 2003.
  • [33] Schöfer J., Rehbein P., Stolz U., Löhe D., Zum Gahr, K. H., Formation of tribochemical films and white layers on self-mated bearing steel surfaces in boundary lubricated sliding contact, Wear, 248 (1–2), 7-15, 2001.
  • [34] Durand J. M., Vardavoulias M., Jeandin M., Role of reinforcing ceramic particles in the wear behavior of polymer -based model composites, Wear, 181–183, 833–839, 1995.

Dry sliding behaviour of boron waste reinforced epoxy matrix composites

Yıl 2018, , 63 - 70, 05.07.2018
https://doi.org/10.30728/boron.343608

Öz

The
demand for utilization of boron wastes related to the generation of massive
amounts in each year is on the rise. In order to meet this growing need and
demand for fabrication of environmentally friendly products, epoxy matrix
composites containing 60wt% of boron wastes was developed. The influence of
boron waste addition and the particle size of boron waste on epoxy matrix
composites on physico-mechanical and tribological properties were evaluated. It
was found that, hardness, flexural modulus and wear resistance properties were
increased with the incorporation of boron wastes. Wear resistance increased
with increasing boron waste particle size. The lowest specific wear rate was
achieved for the largest particle size added composites. The physico-mechanical
properties as well as microstructure wear behavior correlation were evaluated
comprehensively. 

Kaynakça

  • [1] Eti Mine Works General Management, Project Report, Eskişehir/Turkey, 2013 (http://www.csb.gov.tr/db/ced/editordosya/Eti%20Maden%20Yeni%20Atik%20Baraji%20CED%20Raporu(2).pdf).
  • [2] Bentli T., Özdemir O., Çeük M. S., Ediz N., Bor atıkları ve değerlendirilme -stratejileri, The First International Boron Symposium, Kütahya, Turkey, 250-258, 2002 http://www.maden.org.tr/resimler/ekler/c4e a5258ef3fb3f_ek.pdf.
  • [3] Kavas K., Emrullahoğlu, Ö. F., Seydişehir kırmızı çamuru ve Kırka bor atıklannın endüstriyel hammadde olarak kullanımı, LButı Anadolu Hammadde Kaynakları Sempozyumu, TMMOB Jeoloji Mühendisleri Odası, İzmir, 216-225, 1999.
  • [4] Genç S., Sevinç V., Özşeker A., Çakı M., Etibank Kırka boraks işletmesi konsantratör atığının sır hammaddesi olarak değerlendirilmesi, 4. Seramik Kongresi. Türk Seramik Derneği Yayınları No: 20 Eds Turan, Kara&Pfltun, Eskişehir, 119-124, 1998.
  • [5] Kavas T., Christogerou A., Pontikes Y., Angelopoulos G. N., Valorisation of different types of boron-containing wastes for the production of lightweight aggregates, J. Hazard. Mater., 185 (2-3), 1381-1389, 2011.
  • [6] Özdemir M., Öztürk N. U., Utilization of clay wastes containing boron as cement additives, Cem. Concr. Res., 33 (10), 1659-1661, 2003.
  • [7] Sönmez E., Özdağ H., Özler A., Sümer G., Kırka boraks işletmesi atık killerinin seramik endüstrisinde kullanılabilirliğinin araştırılması, Türkiye 13. Madencilik Kongresi, TMMOB Maden Mühendisleri Odası Istanbul, 561-566, 1993.
  • [8] Sönmez E., Yorulmaz S., Kırka boraks işletmesi atık killerinin tuğla yapımında kullanılabilirliğinin araştırılması, Endüstriyel Hammaddeler Sempozyumu, TMMOB Maden Mühendisleri Odası, İzmir, 163-168, 1995.
  • [9] Ediz N, Özdag H., Kırka boraks işletmesi atık killerinin tuğla yapımında kullanılabilirliğinin araştırılması, TMMOB Madencilik Dergisi, Cilt 34, Sayı 4, Ankara, 27-34, 1995.
  • [10] Wang R. M., Zheng S. R., Zhen Y. P., Polymer Matrix Composites and Technology, Woodhead Publishing in Materials, 2011.
  • [11] Acikbas G., Gocmez H., Characterization and properties of industrial polymer matrix composite sanitarywares, Materials Testing, 59 (11-12), 1067-1074, 2017.
  • [12] Menezes R. R., Santana L. N. L., Neves and Ferreira H. C., Recycling of Mine Wastes as Ceramic Raw Materials: An Alternative to Avoid Environmental Contamination, Environmental Contamination, Dr. Jatin Srivastava (Ed.), InTech, 199-220, 2012.
  • [13] Ashori A., Hybrid composites from waste materials, J. Polym. Environ.,18, 65–70, 2010.
  • [14] Medupin R. O., Abubakre O. K., Ukoba O., Imoisili P. E., Mechanical properties of wood waste reinforced polymer matrix composites, Am. Chem. Sci. J. 3 (4), 507–513, 2013.
  • [15] Koleva M., Zheglova A., Fidancevska E., Vassilev V., Composites Containing Waste Materials, INTECH Open Access Publisher, Croatia, 2011.
  • [16] Sathiyamoorthy M., Thanappan S., Senthilkumar M., Utilization of waste rubber tires as an additional ingredient of concrete mixtures, Int. J. Eng. Res. Ind. Appl. 4 (I), 335–350, 2011.
  • [17] Tunsan M., The use of waste materials in asphalt concrete mixtures, Waste Manag. Res., 21 (2), 83–92, 2003.
  • [18] Calis Acikbas N., Acikbas G., Epoxy matrix composites containing urea formaldehyde waste particulate filler, waste and biomass valorization, 8, 669-678, 2017.
  • [19] Vassilev V., Fidancevska E., Milosevski M., Parvanov S., Milosevski D., Hristova-Vasileva T., Composites based on industrial wastes IV. Production of porous composites from Fe– Ni slag and waste glass. J. Univ. Chem. Technol. Metall., 42 (4), 369–376, 2007.
  • [20] Thomas C., Borges P. H. R., Panzera T. H., Cimentada A., Lombillo I., Epoxy composites containing CFRP powder wastes, Compos., B 59, 260–268, 2014.
  • [21] Acikbas G., Ozcan S., Calis Acikbas N., Production and characterization of a hybrid polymer matrix composite, Polym. Compos., 26 Haziran 2017.
  • [22] Acikbas G., Göçmez H., Polyester matrisli kompozit özeliklerine vitrifiye seramik sağlık gereci atık miktarının etkisi, APJES, 5 (3), 138-145, 2017.
  • [23] Acikbas G., Seramik sağlık gereçlerine alternatif polimer matrisli kompozit malzemelerin geliştirilmesi ve karakterizasyonu, Yayınlanmış Doktora Tezi, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya, Türkiye, 2016.
  • [24] Uygunoglu T., Gunes I., Brostow W., Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron, Mater. Res., 18 (6), 1188-1196, 2015.
  • [25] Uygunoglu T., Brostow W., Gunes I., Wear and friction of composites of an epoxy with boron containing wastes, Polímeros, 25 (3), 271-276, 2015.
  • [26] Kadiyala A. K., Bijwe J., Surface lubrication of graphite fabric reinforced epoxy composites with nano- and micro-sized hexagonal boron nitride, Wear, 301 (1-2), 2013.
  • [27] McCook N. L., Boesl B., Burris D. L., Sawyer W. G., Epoxy, ZnO, and PTFE nanocomposite: Friction and wear optimization, Tribol. Lett., 22 (3), 2006.
  • [28] Kurahattia R. V., Surendranatha, A. O., Kumar A., Ramesh V., Wadagerid C. S., Auradie V., Korif S. A., Dry sliding wear behaviour of epoxyreinforced with nano zro2 particles, Procedia Mater. Sci., 5, 274-280, 2014.
  • [29] Açıkbaş G., Çalış Açıkbaş N., İkizek E., Özel M., Eker A. S., Characterization of Green Epoxy Matrix Composites Filled with Ceramic Wastes, ISITES2014 2nd International symposium on innovative technologies in engineering and science proceeding book, Karabük, Turkey, 597–606, 18–20 June 2014.
  • [30] Basu B., Kalin M., Tribology of Ceramics and Composites: Materials Science Perspective, John Wiley & Sons, Inc., USA and American Ceramic Society, 2011.
  • [31] Xu, J. and Kato, K., Formation of tribochemical layer of ceramics sliding in water and its role for low friction, Wear, 245 (1–2), 61-75, 2000.
  • [32] Wimmer M. A., Sprecher C., Hauert R., Tager G., Fischer A., Tribochemical reaction on metal-on-metal hip joint bearings: A comparison between in-vitro and in-vivo results, Wear, 255, 1007-1014, 2003.
  • [33] Schöfer J., Rehbein P., Stolz U., Löhe D., Zum Gahr, K. H., Formation of tribochemical films and white layers on self-mated bearing steel surfaces in boundary lubricated sliding contact, Wear, 248 (1–2), 7-15, 2001.
  • [34] Durand J. M., Vardavoulias M., Jeandin M., Role of reinforcing ceramic particles in the wear behavior of polymer -based model composites, Wear, 181–183, 833–839, 1995.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Bilge Yaman

Nurcan Çalış Açıkbaş

Yayımlanma Tarihi 5 Temmuz 2018
Kabul Tarihi 28 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Yaman, B., & Çalış Açıkbaş, N. (2018). Dry sliding behaviour of boron waste reinforced epoxy matrix composites. Journal of Boron, 3(2), 63-70. https://doi.org/10.30728/boron.343608