Araştırma Makalesi
BibTex RIS Kaynak Göster

The nanobiocomposites synthesis from biomass and its characterization

Yıl 2018, , 93 - 102, 05.07.2018
https://doi.org/10.30728/boron.376517

Öz

This
study was conducted to evaluate the suitability of using hexagonal boron
nitride (hBN) as reinforcement in natural fibres obtained from hazelnut shell
(F) and poppy straw (H). Raw materials were treated with alkali to enrich the
cellulose content by removing lignin and hemicellulose. The nanobiocomposite
synthesis was performed with 4% and 8% of hBN. Lignin, cellulose and
hemicelluloses contents of biomass were determined. Cellulose content was
almost increased 3-fold and 2-fold after pretreatment of hazelnut shell (FCell)
and poppy straw (HCell), respectively. Strong bands at 812 and 1380cm-1
corresponding to hBN were observed in the FTIR. SEM images showed that hBN is
retained on the pretreated natural fibres. Adsorbed hBN on the structure was
highest in the microcrystalline cellulose (Cell) (91.5%), followed by FCell
(80.5%) and HCell (50.5%). Nanobiocomposites containing lignocellulose and hBN
may be recommended for use in polymer matrix structures where thermal
properties need to be altered.

Kaynakça

  • Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology. 2010;21:528-36.
  • Hosgun EZ, Bozan B. Investigation of the effect of low temperature low time alkali pretreatment on hazelnut shells composition and enzymatic hydrolysis. J Fac Eng Archit Gaz. 2017;32:517-29.
  • Swain SK, Dash S, Behera C, Kisku SK, Behera L. Cellulose nanobiocomposites with reinforcement of boron nitride: Study of thermal, oxygen barrier and chemical resistant properties. Carbohydrate Polymers. 2013;95:728-32.
  • Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP. Recent advances in biodegradable nanocomposites. Journal of nanoscience and nanotechnology. 2005;5:497-526.
  • Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of Applied Polymer Science. 2006;100:4703-10.
  • Spiridon I, Popa VI. Chapter 13 - Hemicelluloses: Major Sources, Properties and Applications A2 - Belgacem, Mohamed Naceur. In: Gandini A, editor. Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier; 2008. p. 289-304.
  • Pereira PHF, Rosa MdF, Cioffi MOH, Benini KCCdC, Milanese AC, Voorwald HJC, et al. Vegetal fibers in polymeric composites: a review. Polímeros. 2015;25:9-22.
  • Corradini E, de Morais LC, de F. Rosa M, Mazzetto SE, Mattoso LHC, Agnelli JAM. A Preliminary Study for the Use of Natural Fibers as Reinforcement in Starch-Gluten-Glycerol Matrix. Macromolecular Symposia. 2006;245-246:558-64.
  • Das S, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, et al. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. Journal of Applied Polymer Science. 2000;76:1652-61.
  • Jiang L, Hinrichsen G. Flax and cotton fiber reinforced biodegradable polyester amide composites, 1. Manufacture of composites and characterization of their mechanical properties. Die Angewandte Makromolekulare Chemie. 1999;268:13-7.
  • Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L. Biodegradable composites based on l-polylactide and jute fibres. Composites Science and Technology. 2003;63:1287-96.
  • Mohanty AK, Wibowo A, Misra M, Drzal LT. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing. 2004;35:363-70.
  • Bodros E, Pillin I, Montrelay N, Baley C. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology. 2007;67:462-70.
  • Puglia D, Tomassucci A, Kenny JM. Processing, properties and stability of biodegradable composites based on Mater-Bi® and cellulose fibres. Polymers for Advanced Technologies. 2003;14:749-56.
  • Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products. 2011;33:7-22.
  • Son J, Kim HJ, Lee PW. Role of paper sludge particle size and extrusion temperature on performance of paper sludge-thermoplastic polymer composites. Journal of Applied Polymer Science. 2001;82:2709-18.
  • Bessadok A, Marais S, Gouanvé F, Colasse L, Zimmerlin I, Roudesli S, et al. Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology. 2007;67:685-97.
  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A. Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology. 2007;67:1627-39.
  • Gindl W, Zargar-Yaghubi F, Wimmer R. Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource technology. 2003;87:325-30.
  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology. 2003;63:1247-54.
  • Saw SK. Static and Dynamic Mechanical Analysis of Coir Fiber/Montmorillonite Nanoclay-Filled Novolac/Epoxy Hybrid Nanocomposites. In: Thakur KV, Thakur KM, editors. Eco-friendly Polymer Nanocomposites: Processing and Properties. New Delhi: Springer India; 2015. p. 137-54.
  • Biscarat J, Bechelany M, Pochat-Bohatier C, Miele P. Graphene-like BN/gelatin nanobiocomposites for gas barrier applications. Nanoscale. 2015;7:613-8.
  • Liu L, Shen Z, Zheng Y, Yi M, Zhang X, Ma S. Boron nitride nanosheets with controlled size and thickness for enhancing mechanical properties and atomic oxygen erosion resistance. RSC Advances. 2014;4:37726-32.
  • Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, et al. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Advanced Materials. 2009;21:2088-92.
  • Othman SH. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia. 2014;2:296-303.
  • Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Boron nitride as a lubricant additive. Wear. 1999;232:199-206.
  • Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society. 2008;28:1105-9.
  • Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Safety Assessment of Boron Nitride as Used in Cosmetics. International journal of toxicology. 2015;34:53S-60S.
  • Kisku SK, Swain SK. Synthesis and Characterization of Chitosan/Boron Nitride Composites. Journal of the American Ceramic Society. 2012;95:2753-7.
  • Chan K, Wong H, Yeung K, Tjong S. Polypropylene Biocomposites with Boron Nitride and Nanohydroxyapatite Reinforcements. Materials. 2015;8:992.
  • Seyhan AT, Göncü Y, Durukan O, Akay A, Ay N. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites. Journal of Solid State Chemistry. 2017;249:98-107.
  • Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Applied Materials & Interfaces. 2015;7:13000-6.
  • Sulaiman HS, Hua CC, Zakaria S. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites. AIP Conference Proceedings. 2015;1678:040006.
  • Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano. 2014;8:3606-13.
  • Nagaoka S, Jodai T, Kameyama Y, Horikawa M, Shirosaki T, Ryu N, et al. Cellulose/boron nitride core-shell microbeads providing high thermal conductivity for thermally conductive composite sheets. RSC Advances. 2016;6:33036-42.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory2008. p. 16.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory 2008.
  • Garside P, Wyeth P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Thread and Single Fibre Analysis by Attenuated Total Reflectance. Studies in Conservation. 2003;48:269-75.
  • Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781-8.
  • Yuan T-Q, Xu F, He J, Sun R-C. Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Biotechnology Advances. 2010;28:583-93.
  • Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose - Structure and characterization. Cellulose Chemistry and Technology. 2011;45:13-21.
  • Oun AA, Rhim J-W. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters. 2016;168:146-50.
  • Matějka V, Fu Z, Kukutschová J, Qi S, Jiang S, Zhang X, et al. Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design. 2013;51:847-53.
  • Poletto M, Ornaghi H, Zattera A. Native Cellulose: Structure, Characterization and Thermal Properties. Materials. 2014;7:6105.
  • Xu F, Yu J, Tesso T, Dowell F, Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy. 2013;104:801-9.
  • Aytac Z, Gulmezoglu N, Saglam T, Kulan EG, Selengil U, Hosgun HL. Changes in N, K, and Fatty Acid Composition of Black Cumin Seeds Affected by Nitrogen Doses under Supplemental Potassium Application. J Chem-Ny. 2017.
  • Arsene M-A, Bilba K, Savastano Junior H, Ghavami K. Treatments of non-wood plant fibres used as reinforcement in composite materials. Materials Research. 2013;16:903-23.
  • Zhang Y, Li M, Gu Y, Wang S, Zhang Z. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance. Applied Surface Science. 2017;402:182-91.
  • Bakan F, Sezen M, Gecgin M, Goncu Y, Ay N. Structural and Chemical Analysis of Hydroxyapatite (HA)-Boron Nitride (BN) Nanocomposites Sintered Under Different Atmospheric Conditions. Microscopy and Microanalysis. 2017;23:891-9.
  • Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, et al. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy. 2015;13:346-54.
  • Johar N, Ahmad I, Dufresne A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products. 2012;37:93-9.
  • Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959;29:786-94.
  • Wang S, Luo Z. Pyrolysis of Biomass. Beijing: De Gruyter; 2016.
  • Hosgun EZ, Berikten D, Kivanc M, Bozan B. Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel. 2017;196:280-7.
Yıl 2018, , 93 - 102, 05.07.2018
https://doi.org/10.30728/boron.376517

Öz

Kaynakça

  • Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology. 2010;21:528-36.
  • Hosgun EZ, Bozan B. Investigation of the effect of low temperature low time alkali pretreatment on hazelnut shells composition and enzymatic hydrolysis. J Fac Eng Archit Gaz. 2017;32:517-29.
  • Swain SK, Dash S, Behera C, Kisku SK, Behera L. Cellulose nanobiocomposites with reinforcement of boron nitride: Study of thermal, oxygen barrier and chemical resistant properties. Carbohydrate Polymers. 2013;95:728-32.
  • Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP. Recent advances in biodegradable nanocomposites. Journal of nanoscience and nanotechnology. 2005;5:497-526.
  • Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of Applied Polymer Science. 2006;100:4703-10.
  • Spiridon I, Popa VI. Chapter 13 - Hemicelluloses: Major Sources, Properties and Applications A2 - Belgacem, Mohamed Naceur. In: Gandini A, editor. Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier; 2008. p. 289-304.
  • Pereira PHF, Rosa MdF, Cioffi MOH, Benini KCCdC, Milanese AC, Voorwald HJC, et al. Vegetal fibers in polymeric composites: a review. Polímeros. 2015;25:9-22.
  • Corradini E, de Morais LC, de F. Rosa M, Mazzetto SE, Mattoso LHC, Agnelli JAM. A Preliminary Study for the Use of Natural Fibers as Reinforcement in Starch-Gluten-Glycerol Matrix. Macromolecular Symposia. 2006;245-246:558-64.
  • Das S, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, et al. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. Journal of Applied Polymer Science. 2000;76:1652-61.
  • Jiang L, Hinrichsen G. Flax and cotton fiber reinforced biodegradable polyester amide composites, 1. Manufacture of composites and characterization of their mechanical properties. Die Angewandte Makromolekulare Chemie. 1999;268:13-7.
  • Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L. Biodegradable composites based on l-polylactide and jute fibres. Composites Science and Technology. 2003;63:1287-96.
  • Mohanty AK, Wibowo A, Misra M, Drzal LT. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing. 2004;35:363-70.
  • Bodros E, Pillin I, Montrelay N, Baley C. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology. 2007;67:462-70.
  • Puglia D, Tomassucci A, Kenny JM. Processing, properties and stability of biodegradable composites based on Mater-Bi® and cellulose fibres. Polymers for Advanced Technologies. 2003;14:749-56.
  • Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products. 2011;33:7-22.
  • Son J, Kim HJ, Lee PW. Role of paper sludge particle size and extrusion temperature on performance of paper sludge-thermoplastic polymer composites. Journal of Applied Polymer Science. 2001;82:2709-18.
  • Bessadok A, Marais S, Gouanvé F, Colasse L, Zimmerlin I, Roudesli S, et al. Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Composites Science and Technology. 2007;67:685-97.
  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A. Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology. 2007;67:1627-39.
  • Gindl W, Zargar-Yaghubi F, Wimmer R. Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource technology. 2003;87:325-30.
  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology. 2003;63:1247-54.
  • Saw SK. Static and Dynamic Mechanical Analysis of Coir Fiber/Montmorillonite Nanoclay-Filled Novolac/Epoxy Hybrid Nanocomposites. In: Thakur KV, Thakur KM, editors. Eco-friendly Polymer Nanocomposites: Processing and Properties. New Delhi: Springer India; 2015. p. 137-54.
  • Biscarat J, Bechelany M, Pochat-Bohatier C, Miele P. Graphene-like BN/gelatin nanobiocomposites for gas barrier applications. Nanoscale. 2015;7:613-8.
  • Liu L, Shen Z, Zheng Y, Yi M, Zhang X, Ma S. Boron nitride nanosheets with controlled size and thickness for enhancing mechanical properties and atomic oxygen erosion resistance. RSC Advances. 2014;4:37726-32.
  • Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, et al. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Advanced Materials. 2009;21:2088-92.
  • Othman SH. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia. 2014;2:296-303.
  • Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H. Boron nitride as a lubricant additive. Wear. 1999;232:199-206.
  • Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society. 2008;28:1105-9.
  • Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Safety Assessment of Boron Nitride as Used in Cosmetics. International journal of toxicology. 2015;34:53S-60S.
  • Kisku SK, Swain SK. Synthesis and Characterization of Chitosan/Boron Nitride Composites. Journal of the American Ceramic Society. 2012;95:2753-7.
  • Chan K, Wong H, Yeung K, Tjong S. Polypropylene Biocomposites with Boron Nitride and Nanohydroxyapatite Reinforcements. Materials. 2015;8:992.
  • Seyhan AT, Göncü Y, Durukan O, Akay A, Ay N. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites. Journal of Solid State Chemistry. 2017;249:98-107.
  • Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Applied Materials & Interfaces. 2015;7:13000-6.
  • Sulaiman HS, Hua CC, Zakaria S. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites. AIP Conference Proceedings. 2015;1678:040006.
  • Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano. 2014;8:3606-13.
  • Nagaoka S, Jodai T, Kameyama Y, Horikawa M, Shirosaki T, Ryu N, et al. Cellulose/boron nitride core-shell microbeads providing high thermal conductivity for thermally conductive composite sheets. RSC Advances. 2016;6:33036-42.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory2008. p. 16.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory 2008.
  • Garside P, Wyeth P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Thread and Single Fibre Analysis by Attenuated Total Reflectance. Studies in Conservation. 2003;48:269-75.
  • Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781-8.
  • Yuan T-Q, Xu F, He J, Sun R-C. Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Biotechnology Advances. 2010;28:583-93.
  • Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose - Structure and characterization. Cellulose Chemistry and Technology. 2011;45:13-21.
  • Oun AA, Rhim J-W. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters. 2016;168:146-50.
  • Matějka V, Fu Z, Kukutschová J, Qi S, Jiang S, Zhang X, et al. Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design. 2013;51:847-53.
  • Poletto M, Ornaghi H, Zattera A. Native Cellulose: Structure, Characterization and Thermal Properties. Materials. 2014;7:6105.
  • Xu F, Yu J, Tesso T, Dowell F, Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy. 2013;104:801-9.
  • Aytac Z, Gulmezoglu N, Saglam T, Kulan EG, Selengil U, Hosgun HL. Changes in N, K, and Fatty Acid Composition of Black Cumin Seeds Affected by Nitrogen Doses under Supplemental Potassium Application. J Chem-Ny. 2017.
  • Arsene M-A, Bilba K, Savastano Junior H, Ghavami K. Treatments of non-wood plant fibres used as reinforcement in composite materials. Materials Research. 2013;16:903-23.
  • Zhang Y, Li M, Gu Y, Wang S, Zhang Z. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance. Applied Surface Science. 2017;402:182-91.
  • Bakan F, Sezen M, Gecgin M, Goncu Y, Ay N. Structural and Chemical Analysis of Hydroxyapatite (HA)-Boron Nitride (BN) Nanocomposites Sintered Under Different Atmospheric Conditions. Microscopy and Microanalysis. 2017;23:891-9.
  • Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, et al. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy. 2015;13:346-54.
  • Johar N, Ahmad I, Dufresne A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products. 2012;37:93-9.
  • Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959;29:786-94.
  • Wang S, Luo Z. Pyrolysis of Biomass. Beijing: De Gruyter; 2016.
  • Hosgun EZ, Berikten D, Kivanc M, Bozan B. Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel. 2017;196:280-7.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Yapıncak Göncü Bu kişi benim

Emir Zafer Hoşgün Bu kişi benim

Nuran Ay

Berrin Bozan

Yayımlanma Tarihi 5 Temmuz 2018
Kabul Tarihi 12 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Göncü, Y., Hoşgün, E. Z., Ay, N., Bozan, B. (2018). The nanobiocomposites synthesis from biomass and its characterization. Journal of Boron, 3(2), 93-102. https://doi.org/10.30728/boron.376517