Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of different sintering temperatures on microstructure and hardness in Al-7Si%10B4C composite material production

Yıl 2019, , 60 - 65, 16.03.2019
https://doi.org/10.30728/boron.401290

Öz

In this study, Al-7Si%10B4C metal matrix composite material
was produced by adding 10 wt. % B4C in weight into the Al-%7Si
powder mixture, using powder metallurgy method. The prepared powder mixtures
were subjected to cold press under a pressure of 450 MPa and sintered for 60
minutes at different sintering temperatures (550°C, 570°C and 590°C) in an
argon gas atmosphere. Microstructures of Al7Si%10B4C composite
materials produced at different sintering temperatures were characterized by
SEM+EDS, X-ray diffraction (XRD) and hardness measurements. As a result of the
study, it was observed that Al3,21Si0,47 in matrix phase
and AlB12, AlB10, phase and compounds between matrix and reinforcement
were formed by increasing the sintering temperature. Furthermore, it was
determined that there is a significant increase in hardness values due to the
increase in temperature values.

Kaynakça

  • [1] Cerit A. A., Karamis M. B., Nair F., Yıldızlı K., Effect of reinforcement particle size and volume fraction on wear behaviour of metal matrix composites, Journal of Balkan Tribological Association, 12 (4), 482-489, 2008.
  • [2] Jiang L., Wen H., Yang H., Hu T., Topping T., Zhang D., Schoenung J. M., Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix, Acta Materialia, 89, 327-343, 2015.
  • [3] Li M., Ma K., Jiang L., Yang H., Lavernia E. J., Zhang L., Schoenung J. M., Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites, Materials Science and Engineering: A, 656, 241-248, 2016.
  • [4] Casati R., Vedani M., Metal matrix composites reinforced by nano-particles a review, Metals, 4(1), 65-83, (2014).
  • [5] Sharifi E. M., Karimzadeh F., Enayati M. H., Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites, Materials & Design, 32(6), 3263-3271, 2011.
  • [6] Alumınıja V. H. K. N. O., Wear behaviour of B4C reinforced hybrid aluminum-matrix composites, Materiali in tehnologije, 49(1), 9-13. 2015.
  • [7] Çolak N , Turhan H ., Toz Metalurjisi Yöntemi ile Üretilen Al-Si/B4C Kompozit Malzemenin Mikroyapı ve Mekanik Özelliklerinin Araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 259-266., 2016.
  • [8] Toptan F., Kilicarslan A., Karaaslan A., Cigdem M., Kerti I., Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites, Materials & Design, 31, 87-91, 2010.
  • [9] Mohanty R. M., Balasubramanian K., Seshadri S. K., Boron carbide-reinforced alumnium 1100 matrix composites: fabrication and properties, Materials Science and Engineering: A, 498 (1-2), 42-52, 2008.
  • [10] Topçu I., Gülsoy H. O., Kadıoğlu N., Güllüoğlu A. N., Processing and mechanical properties of B4C reinforced Al matrix composites, Journal of Alloys and Compounds, 482 (1-2), 516-521, 2009.
  • [11] Lü P., Yue X. Y., Yu L., Ru H. Q., Effect of in situ synthesized TiB2 on the reaction between B4C and Al in a vacuum infiltrated B4C–TiB2–Al composite, Journal of materials science, 44 (13), 3483-3487, 2009.
  • [12] Ghasali E., Alizadeh M., Ebadzadeh T., hossein Pakseresht A., Rahbari A., Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. Journal of Materials Research and Technology, 4 (4), 411-415, 2015.
  • [13] Hu H. M., Lavernia E. J., Harrigan W. C., Kajuch J., Nutt S. R., Microstructural investigation on B4C/Al-7093 composite, Materials Science and Engineering: A, 297(1-2), 94-104, 2001.
  • [14] Jung J., Kang S., Advances in Manufacturing Boron Carbide‐Aluminum Composites, Journal of the American Ceramic Society, 87(1), 47-54, 2004.
  • [15] Frage N., Levin L., Frumin N., Gelbstein M., Dariel M. P., Manufacturing B4C–(Al, Si) composite materials by metal alloy infiltration, Journal of materials processing technology, 143, 486-490, 2003.
  • [16] Gomez L., Busquets-Mataix D., Amigo V., Salvador M. D., Analysis of boron carbide aluminum matrix composites. Journal of composite materials, 43(9), 987-995, 2009.
  • [17] Halverson D. C., Pyzik A. J., Aksay I. A., Snowden W. E., Processing of Boron Carbide‐Aluminum Composites. Journal of the American Ceramic Society, 72 (5), 775-780, 1989.
  • [18] Viala J. C., Bouix J., Gonzalez G., Esnouf C., Chemical reactivity of aluminium with boron carbide. Journal of Materials Science, 32(17), 4559-4573, 1997.
  • [19] Kumdalı F., Alüminyum Matrisli B4C Takviyeli Kompozitlerin Toz Metalurjisi Yöntemi İle Üretimi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2008.
  • [20] Alp E., Karaçay E., Cabbar H. C., Düşük sıcaklıkta bor karbür üretimi ve karakterizasyonu, Journal of the Faculty of Engineering & Architecture of Gazi University, 28 (2), 2013.
  • [21].Güler M., Alüminyum alaşımlarında inklüzyon çeşitleri ve önleyici faaliyetler, Metalurji, 184 (07), 36-42, 2017.
  • [22] Pyzik A. J., Beaman D. R., Al‐B‐C Phase Development and Effects on Mechanical Properties of B4C/Al‐Derived Composites, Journal of the American Ceramic Society, 78 (2), 305-312, 1995.

Al-7Si%10B4C kompozit malzeme üretiminde farklı sinterleme sıcaklıklarının mikroyapı ve sertlik üzerine etkisi

Yıl 2019, , 60 - 65, 16.03.2019
https://doi.org/10.30728/boron.401290

Öz

Bu çalışmada,
Al-7Si%10B4C metal matrisli kompozit malzeme, Al-%7Si toz karışımı
içerisine ağırlıkça %10 oranında B4C ilave edilerek toz metalurjisi
yöntemi kullanılarak üretilmiştir. Hazırlanan toz karışımları, 450 MPa basınç
altında soğuk presleme işlemine tabi tutulmuş ve argon gazı atmosferinde farklı
sinterleme sıcaklıklarında (550 oC, 570 oC ve 590 oC)
60 dakika süre ile sinterlenmiştir. Farklı sinterleme sıcaklıklarında üretilen
Al7Si%10B4C kompozit malzemelerin mikro yapıları, SEM+EDS, X-ışını
kırınımı (XRD) ve sertlik ölçümü ile karakterize edilmiştir. Çalışma sonucunda,
sinterleme sıcaklığının artması ile matris fazında Al3,21Si0,47
ve matris-takviye arasında ise AlB12, AlB10, faz ve
bileşikleri oluştuğu görülmüştür. Ayrıca sıcaklık değerlerindeki artışa bağlı
olarak sertlik değerlerinde görülür bir artış olduğu belirlenmiştir.

Kaynakça

  • [1] Cerit A. A., Karamis M. B., Nair F., Yıldızlı K., Effect of reinforcement particle size and volume fraction on wear behaviour of metal matrix composites, Journal of Balkan Tribological Association, 12 (4), 482-489, 2008.
  • [2] Jiang L., Wen H., Yang H., Hu T., Topping T., Zhang D., Schoenung J. M., Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix, Acta Materialia, 89, 327-343, 2015.
  • [3] Li M., Ma K., Jiang L., Yang H., Lavernia E. J., Zhang L., Schoenung J. M., Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites, Materials Science and Engineering: A, 656, 241-248, 2016.
  • [4] Casati R., Vedani M., Metal matrix composites reinforced by nano-particles a review, Metals, 4(1), 65-83, (2014).
  • [5] Sharifi E. M., Karimzadeh F., Enayati M. H., Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites, Materials & Design, 32(6), 3263-3271, 2011.
  • [6] Alumınıja V. H. K. N. O., Wear behaviour of B4C reinforced hybrid aluminum-matrix composites, Materiali in tehnologije, 49(1), 9-13. 2015.
  • [7] Çolak N , Turhan H ., Toz Metalurjisi Yöntemi ile Üretilen Al-Si/B4C Kompozit Malzemenin Mikroyapı ve Mekanik Özelliklerinin Araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 259-266., 2016.
  • [8] Toptan F., Kilicarslan A., Karaaslan A., Cigdem M., Kerti I., Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites, Materials & Design, 31, 87-91, 2010.
  • [9] Mohanty R. M., Balasubramanian K., Seshadri S. K., Boron carbide-reinforced alumnium 1100 matrix composites: fabrication and properties, Materials Science and Engineering: A, 498 (1-2), 42-52, 2008.
  • [10] Topçu I., Gülsoy H. O., Kadıoğlu N., Güllüoğlu A. N., Processing and mechanical properties of B4C reinforced Al matrix composites, Journal of Alloys and Compounds, 482 (1-2), 516-521, 2009.
  • [11] Lü P., Yue X. Y., Yu L., Ru H. Q., Effect of in situ synthesized TiB2 on the reaction between B4C and Al in a vacuum infiltrated B4C–TiB2–Al composite, Journal of materials science, 44 (13), 3483-3487, 2009.
  • [12] Ghasali E., Alizadeh M., Ebadzadeh T., hossein Pakseresht A., Rahbari A., Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. Journal of Materials Research and Technology, 4 (4), 411-415, 2015.
  • [13] Hu H. M., Lavernia E. J., Harrigan W. C., Kajuch J., Nutt S. R., Microstructural investigation on B4C/Al-7093 composite, Materials Science and Engineering: A, 297(1-2), 94-104, 2001.
  • [14] Jung J., Kang S., Advances in Manufacturing Boron Carbide‐Aluminum Composites, Journal of the American Ceramic Society, 87(1), 47-54, 2004.
  • [15] Frage N., Levin L., Frumin N., Gelbstein M., Dariel M. P., Manufacturing B4C–(Al, Si) composite materials by metal alloy infiltration, Journal of materials processing technology, 143, 486-490, 2003.
  • [16] Gomez L., Busquets-Mataix D., Amigo V., Salvador M. D., Analysis of boron carbide aluminum matrix composites. Journal of composite materials, 43(9), 987-995, 2009.
  • [17] Halverson D. C., Pyzik A. J., Aksay I. A., Snowden W. E., Processing of Boron Carbide‐Aluminum Composites. Journal of the American Ceramic Society, 72 (5), 775-780, 1989.
  • [18] Viala J. C., Bouix J., Gonzalez G., Esnouf C., Chemical reactivity of aluminium with boron carbide. Journal of Materials Science, 32(17), 4559-4573, 1997.
  • [19] Kumdalı F., Alüminyum Matrisli B4C Takviyeli Kompozitlerin Toz Metalurjisi Yöntemi İle Üretimi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2008.
  • [20] Alp E., Karaçay E., Cabbar H. C., Düşük sıcaklıkta bor karbür üretimi ve karakterizasyonu, Journal of the Faculty of Engineering & Architecture of Gazi University, 28 (2), 2013.
  • [21].Güler M., Alüminyum alaşımlarında inklüzyon çeşitleri ve önleyici faaliyetler, Metalurji, 184 (07), 36-42, 2017.
  • [22] Pyzik A. J., Beaman D. R., Al‐B‐C Phase Development and Effects on Mechanical Properties of B4C/Al‐Derived Composites, Journal of the American Ceramic Society, 78 (2), 305-312, 1995.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Niyazi Yılmaz Çolak

Hüseyin Turhan Bu kişi benim

Yayımlanma Tarihi 16 Mart 2019
Kabul Tarihi 8 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Çolak, N. Y., & Turhan, H. (2019). Al-7Si%10B4C kompozit malzeme üretiminde farklı sinterleme sıcaklıklarının mikroyapı ve sertlik üzerine etkisi. Journal of Boron, 4(1), 60-65. https://doi.org/10.30728/boron.401290