Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor stresi altında Arabidopsis thaliana (L.) Heynh’da süperoksit dismutaz genlerinin ekspresyon profillerinin belirlenmesi

Yıl 2018, , 145 - 150, 30.11.2018
https://doi.org/10.30728/boron.409349

Öz

Borun topraktaki eksikliği veya yüksek konsantrasyonda
bulunması önemli bir abiyotik stres faktörü olabilmektedir. Arabidopsis thalianada Cu/ZnSOD (CSD1, CDS2, CSD3), FeSOD (FSD1, FSD2, FSD3) ve MnSOD (MSD1) genlerinden oluşan 7 farklı
süperoksit dismutaz (SOD) izoformu tanımlanmıştır. Yapılan çalışmada amaç bor (B)
eksikliği veya toksisite koşulları altında Arabidopsis
thaliana
(L.)’nın yaprak ve kök dokusunda antioksidan sistemin anahtar
enzimi olan süperoksit dismutazı kodlayan genlerin ifade düzeylerini Real-Time
PCR ile belirlenmesidir.
Arabidopsis bitkileri altı hafta hidroponik
kültür sisteminde yetiştirilmiş ve 48 saat süreyle borik asit (BA)  içermeyen (0 µM) veya yüksek konsantrasyonda BA
(3000 µM) içeren besin ortamlarında inkübe edilmiştir. B stres uygulamaları CSD1 ve FSD3 genlerinin ekspresyonunu yaprak dokusunda arttırmıştır. MSD1 geninin mRNA seviyesi yaprak
dokusunda B toksisite uygulaması sonucu artarken, kök dokusunda B eksikliğinde artış
göstermiştir. B eksikliği ve toksisitesi uygulamaları CSD2, FSD1 ve FSD2 genlerinin ekspresyon düzeyini dokuya
bağlı olarak değiştirmiştir.
Sonuç olarak, B stresinin kök ve yapraklarda farklı
hücresel kompartımanlarda antioksidatif savunmayı tetiklediği ortaya
koyulmuştur.

Kaynakça

  • [1] Camacho-Cristobal J.J., Rexach J., Gonzalez-Fontes A., Boron in plants: deficiency and toxicity, J. Integr. Plant Biol., 50(10), 1247-55, 2008.
  • [2] Takano J., Miwa K., Fujiwara T., Boron transport mechanisms: collaboration of channels and transporters, Trends Plant Sci, 13(8), 451-7, 2008.
  • [3] Goldbach H.E., Wimmer M.A., Boron in plants and animals: Is there a role beyond cell‐wall structure?, J. Plant Nutr. Soil Sci., 170(1), 39-48, 2007.
  • [4] Nable R.O., Bañuelos G.S., Paull J.G., Boron toxicity, Plant and Soil, 193(1), 181-198, 1997.
  • [5] Reid R. Physiology and Metabalism of Boron in Plants. Dordrecht, Springer Netherlands, 2007.
  • [6] Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7(9), 405-10, 2002.
  • [7] Sharma P., Jha A.B., Dubey R.S., Pessarakli M., Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, J. Bot., 2012, 26, 2012.
  • [8] Cadenas E., Biochemistry of oxygen toxicity, Annu Rev Biochem, 58, 79-110, 1989.
  • [9] Halliwell B., Gutteridge J.M., Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol., 186, 1-85, 1990.
  • [10] Mukhopadhyay M., Ghosh P.D., Mondal T.K., Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets, Russian Journal of Plant Physiology, 60(5), 633-639, 2013.
  • [11] Surgun Y., Çöl B., Bürün B., 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation, Acta Physiologiae Plantarum, 38(3), 71, 2016.
  • [12] Yusuf M., Fariduddin Q., Ahmad A., 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants, Chemosphere, 85(10), 1574-84, 2011.
  • [13] Tewari R.K., Kumar P., Sharma P.N., Morphology and oxidative physiology of boron-deficient mulberry plants, Tree Physiol., 30(1), 68-77, 2010.
  • [14] Fujiwara T., Hirai M.Y., Chino M., Komeda Y., Naito S., Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia, Plant Physiol., 99(1), 263-8, 1992.
  • [15] Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25(4), 402-8, 2001.
  • [16] Gill S.S., Tuteja N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48(12), 909-30, 2010.
  • [17] C Bowler, M V Montagu a., Inze D., Superoxide Dismutase and Stress Tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43(1), 83-116, 1992.
  • [18] Rubio M.C., Bustos-Sanmamed P., Clemente M.R., Becana M., Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus, New Phytol., 181(4), 851-9, 2009.
  • [19] Kliebenstein D.J., Monde R.A., Last R.L., Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization, Plant Physiol., 118(2), 637-50, 1998.
  • [20] Tsang E.W., Bowler C., Herouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inze D., Differential regulation of superoxide dismutases in plants exposed to environmental stress, Plant Cell, 3(8), 783-92, 1991.
  • [21] Sharma Y.K., Davis K.R., Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana, Plant Physiol., 105(4), 1089-1096, 1994.
  • [22] Abercrombie J.M., Halfhill M.D., Ranjan P., Rao M.R., Saxton A.M., Yuan J.S., Stewart C.N., Jr., Transcriptional responses of Arabidopsis thaliana plants to As (V) stress, BMC Plant Biol., 8, 87, 2008.
  • [23] Abdel-Ghany S.E., Pilon M., MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis, J. Biol. Chem., 283(23), 15932-45, 2008.
  • [24] Sharma I., Ching E., Saini S., Bhardwaj R., Pati P.K., Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1, Plant Physiol. Biochem., 69, 17-26, 2013.
  • [25] Ara N., Nakkanong K., Lv W., Yang J., Hu Z., Zhang M., Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line "Maxchata", Int. J. Mol. Sci., 14(12), 24008-28, 2013.
  • [26] Tran L.S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K., Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter, Plant Cell, 16(9), 2481-98, 2004.
  • [27] Remans T., Opdenakker K., Guisez Y., Carleer R., Schat H., Vangronsveld J., Cuypers A., Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature, Environ. Exp. Bot., 84, 61-71, 2012.
  • [28] Smeets K., Ruytinx J., Semane B., Van Belleghem F., Remans T., Van Sanden S., Vangronsveld J., Cuypers A., Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress, Environ. Exp. Bot., 63(1), 1-8, 2008.
  • [29] Vanhoudt N., Vandenhove H., Smeets K., Remans T., Van Hees M., Wannijn J., Vangronsveld J., Cuypers A., Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana, Plant Physiol. Biochem., 46(11), 987-996, 2008.
  • [30] Apel K., Hirt H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-99, 2004.
  • [31] Inzé D., Montagu M.V., Oxidative stress in plants, Curr. Opin. Biotechnol., 6(2), 153-158, 1995.

Determination of expression profiles of superoxide dismutase genes in Arabidopsis thaliana (L.) Heynh under boron stress

Yıl 2018, , 145 - 150, 30.11.2018
https://doi.org/10.30728/boron.409349

Öz

Deficiency or excess
of boron in the soil may be an important abiotic stress factor. Seven different
superoxide dismutase (SOD) isoforms including Cu/ZnSOD (CSD1, CDS2, CSD3), FeSOD (FSD1, FSD2, FSD3), and MnSOD (MSD1) genes have been identified
in Arabidopsis thaliana. The aim of
this study is to determine the expression levels of the genes encoding
superoxide dismutase, which is the key enzyme of the antioxidant system in leaf
and root tissues of Arabidopsis thaliana
(L.) under boron (B) deficiency or toxicity conditions using Real-Time
PCR. 
Arabidopsis plants were grown in hydroponic culture system for six
weeks and incubated for 48 hours in mediums excluding boric acid (BA) (0 µM) or
including high concentration of BA (3000 µM). B stress tretaments
increased the expression levels of the CSD1
and FSD3 genes in leaf tissue.
mRNA level of MSD1 gene is increased in result of B
toxicity application in leaf tissue, while in root tissue B deficiency application
increased the mRNA level. B deficiency and toxicity treatments altered
the expression levels of the CSD2, FSD1,
and FSD2 genes depending on the
tissue. In conclusion, it has been revealed that B stress triggers
antioxidative defense mechanisms in different cellular compartments in roots
and leaves.

Kaynakça

  • [1] Camacho-Cristobal J.J., Rexach J., Gonzalez-Fontes A., Boron in plants: deficiency and toxicity, J. Integr. Plant Biol., 50(10), 1247-55, 2008.
  • [2] Takano J., Miwa K., Fujiwara T., Boron transport mechanisms: collaboration of channels and transporters, Trends Plant Sci, 13(8), 451-7, 2008.
  • [3] Goldbach H.E., Wimmer M.A., Boron in plants and animals: Is there a role beyond cell‐wall structure?, J. Plant Nutr. Soil Sci., 170(1), 39-48, 2007.
  • [4] Nable R.O., Bañuelos G.S., Paull J.G., Boron toxicity, Plant and Soil, 193(1), 181-198, 1997.
  • [5] Reid R. Physiology and Metabalism of Boron in Plants. Dordrecht, Springer Netherlands, 2007.
  • [6] Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7(9), 405-10, 2002.
  • [7] Sharma P., Jha A.B., Dubey R.S., Pessarakli M., Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, J. Bot., 2012, 26, 2012.
  • [8] Cadenas E., Biochemistry of oxygen toxicity, Annu Rev Biochem, 58, 79-110, 1989.
  • [9] Halliwell B., Gutteridge J.M., Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol., 186, 1-85, 1990.
  • [10] Mukhopadhyay M., Ghosh P.D., Mondal T.K., Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets, Russian Journal of Plant Physiology, 60(5), 633-639, 2013.
  • [11] Surgun Y., Çöl B., Bürün B., 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation, Acta Physiologiae Plantarum, 38(3), 71, 2016.
  • [12] Yusuf M., Fariduddin Q., Ahmad A., 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants, Chemosphere, 85(10), 1574-84, 2011.
  • [13] Tewari R.K., Kumar P., Sharma P.N., Morphology and oxidative physiology of boron-deficient mulberry plants, Tree Physiol., 30(1), 68-77, 2010.
  • [14] Fujiwara T., Hirai M.Y., Chino M., Komeda Y., Naito S., Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia, Plant Physiol., 99(1), 263-8, 1992.
  • [15] Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25(4), 402-8, 2001.
  • [16] Gill S.S., Tuteja N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48(12), 909-30, 2010.
  • [17] C Bowler, M V Montagu a., Inze D., Superoxide Dismutase and Stress Tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 43(1), 83-116, 1992.
  • [18] Rubio M.C., Bustos-Sanmamed P., Clemente M.R., Becana M., Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus, New Phytol., 181(4), 851-9, 2009.
  • [19] Kliebenstein D.J., Monde R.A., Last R.L., Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization, Plant Physiol., 118(2), 637-50, 1998.
  • [20] Tsang E.W., Bowler C., Herouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inze D., Differential regulation of superoxide dismutases in plants exposed to environmental stress, Plant Cell, 3(8), 783-92, 1991.
  • [21] Sharma Y.K., Davis K.R., Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana, Plant Physiol., 105(4), 1089-1096, 1994.
  • [22] Abercrombie J.M., Halfhill M.D., Ranjan P., Rao M.R., Saxton A.M., Yuan J.S., Stewart C.N., Jr., Transcriptional responses of Arabidopsis thaliana plants to As (V) stress, BMC Plant Biol., 8, 87, 2008.
  • [23] Abdel-Ghany S.E., Pilon M., MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis, J. Biol. Chem., 283(23), 15932-45, 2008.
  • [24] Sharma I., Ching E., Saini S., Bhardwaj R., Pati P.K., Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1, Plant Physiol. Biochem., 69, 17-26, 2013.
  • [25] Ara N., Nakkanong K., Lv W., Yang J., Hu Z., Zhang M., Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species ("Cucurbita maxima" and "Cucurbita moschata") and their interspecific inbred line "Maxchata", Int. J. Mol. Sci., 14(12), 24008-28, 2013.
  • [26] Tran L.S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K., Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter, Plant Cell, 16(9), 2481-98, 2004.
  • [27] Remans T., Opdenakker K., Guisez Y., Carleer R., Schat H., Vangronsveld J., Cuypers A., Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature, Environ. Exp. Bot., 84, 61-71, 2012.
  • [28] Smeets K., Ruytinx J., Semane B., Van Belleghem F., Remans T., Van Sanden S., Vangronsveld J., Cuypers A., Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress, Environ. Exp. Bot., 63(1), 1-8, 2008.
  • [29] Vanhoudt N., Vandenhove H., Smeets K., Remans T., Van Hees M., Wannijn J., Vangronsveld J., Cuypers A., Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana, Plant Physiol. Biochem., 46(11), 987-996, 2008.
  • [30] Apel K., Hirt H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-99, 2004.
  • [31] Inzé D., Montagu M.V., Oxidative stress in plants, Curr. Opin. Biotechnol., 6(2), 153-158, 1995.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Yonca Surgun Acar 0000-0002-8684-329X

Rabia İşkil Bu kişi benim

Yavuz Erden

Yayımlanma Tarihi 30 Kasım 2018
Kabul Tarihi 24 Temmuz 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Surgun Acar, Y., İşkil, R., & Erden, Y. (2018). Bor stresi altında Arabidopsis thaliana (L.) Heynh’da süperoksit dismutaz genlerinin ekspresyon profillerinin belirlenmesi. Journal of Boron, 3(3), 145-150. https://doi.org/10.30728/boron.409349