Araştırma Makalesi
BibTex RIS Kaynak Göster

Ay taşımacılığında elektromanyetik fırlatma teknolojisi ve bor

Yıl 2018, , 195 - 200, 30.11.2018
https://doi.org/10.30728/boron.423381

Öz

Gelecek yıllarda, ay yerinde keşfedildiğinde, aydan uzaya malzeme nakliyesi yeteneklerinin geliştirilmesi planlanmaktadır. Uzay araçlarının yakıt ikmali için gerekli oksijen gibi ay malların yörüngedeki depolara taşınaması sağlanacaktır. Genel olarak aydan malzeme nakliyesi söz konusu olduğunda EMFS (Elektromanyetik Fırlatma Sistemi) teknolojisinin, yakın gelecekteki üstünlükleri çok iyi açıklanabilir. EMFS’nin kimyasal fırlatma sistemine göre, yüksek kapasiteli taşıma, yüksek güvenlik ve çevresel sürdürülebilirlik ile düşük bakım maliyetleri ve yüksek verimlilik gibi çeşitli avantajları bulunmaktadır. Sunulan ön konseptin geliştirilmesi ve bu tür bir sistemle dağıtımının fizibilite ve net faydası ile ilgili, yüksek yük taşıma kapasitesine sahip oluşu EMFS’yi desteklemektedir. EMFS halen sürdürülen bir çalışmadır ve özellikle donanım geliştirme aşamasında dikkate alınması gereken birçok zorlukları bulunmaktadır. Bu çalışmada Yüksek Sıcaklık Süperiletken (HTSC) MgB2 gibi malzemeler, ana güç üretimi, veriyolu çalışması, endüktif enerji depolama, devre açma anahtarları, başlatıcı bobinler ve yükler dahil, birçok EMFS bileşenleri için yaygın olarak kullanılan uygulamalardır.

Kaynakça

  • [1] Lyndon B., Lunar base applications of superconductivity, National Aeronautics and Space Administration. Johnson Space Center Advanced Projects Office, NASA Contract No. NAS9-17878, Eagle Eng. Report No. 88-218, 1988.[2] Space settlements: A Design Study by NASA, Gerard K. O'Neill, Original Title Space Settlements: A Design Study, Stanford University and the Ames Research Center of the National Aeronautics and Space Administration, ISBN 1410218228 (ISBN13: 9781410218223)[3] Snow W. R., Kolm H. H., Electromagnetic launch of lunar material, NASA SP-509. Energy, Power and Transport, 117, 2, 1992. [4] Snow, W. R., Kolm, H. H., Electromagnetic launch of lunar material, Johnson Space Center, Space Resources. Volume 2: Energy, Power, and Transport, 117-135 (SEE N93-16905 05-91), 1992NASSP.509B.117S.[5] Akyuz, Y., Bicer, A., Guru, M., Synthesis and processing of Al sheathed MgB2 tapes by powder in tube method and determination of superconducting and mechanical properties, Mater Design, 28, 9, 2500-2504, 2007.[6] İnger, E., Electromagnetic launching systems to geosynchronously equatorial orbit in space and cost calculations, IEEE T Plasma Sci, 45, 7, 1663-1666, 2017.[7] Marder B., A coilgun design primer, IEEE T Magn, 29, 1, 1993.[8] Kim S. W., Jung H. K., Hahn S. Y., Optimal design of multistage coilgun, IEEE T Magn, 32, 2, 1996.[9] Marder B., Slingshot- a coilgun design code, SAND2001-1780, 2001.[10] McNab I. R., Launch to space with an electromagnetic railgun, IEEE T Magn, 39, 1, 2003.

Electromagnetic launching technology and boron at Moon for Space

Yıl 2018, , 195 - 200, 30.11.2018
https://doi.org/10.30728/boron.423381

Öz

Future
exploration of the Moon will require the development of capabilities in-situ restore
utilization. Transport of Lunar commodities such as oxygen to orbiting depots
will be used for refueling of space vehicles. EMFS (Electromagnetic Launching
System) technology in general, could very well prove its advantages for the
near future with compare to chemical launch system. EMFS offers various
benefits such as high efficiency with high rated transportation, low
maintenance with increased safety and environmental sustainability. Developing
the preliminary concept presented here supports EMFS with high payloads
regarding the feasibility and net benefit of deploying such a system. This is a
work in progress and that there are many difficulties to be considered
especially in hardware implementation.
Applications
of High Temperature Superconductors (HTSC) are prevalent for many of the EMFS
components, including prime power generation, bus work, inductive energy
storage, opening switches, launcher coils, and payloads.

Kaynakça

  • [1] Lyndon B., Lunar base applications of superconductivity, National Aeronautics and Space Administration. Johnson Space Center Advanced Projects Office, NASA Contract No. NAS9-17878, Eagle Eng. Report No. 88-218, 1988.[2] Space settlements: A Design Study by NASA, Gerard K. O'Neill, Original Title Space Settlements: A Design Study, Stanford University and the Ames Research Center of the National Aeronautics and Space Administration, ISBN 1410218228 (ISBN13: 9781410218223)[3] Snow W. R., Kolm H. H., Electromagnetic launch of lunar material, NASA SP-509. Energy, Power and Transport, 117, 2, 1992. [4] Snow, W. R., Kolm, H. H., Electromagnetic launch of lunar material, Johnson Space Center, Space Resources. Volume 2: Energy, Power, and Transport, 117-135 (SEE N93-16905 05-91), 1992NASSP.509B.117S.[5] Akyuz, Y., Bicer, A., Guru, M., Synthesis and processing of Al sheathed MgB2 tapes by powder in tube method and determination of superconducting and mechanical properties, Mater Design, 28, 9, 2500-2504, 2007.[6] İnger, E., Electromagnetic launching systems to geosynchronously equatorial orbit in space and cost calculations, IEEE T Plasma Sci, 45, 7, 1663-1666, 2017.[7] Marder B., A coilgun design primer, IEEE T Magn, 29, 1, 1993.[8] Kim S. W., Jung H. K., Hahn S. Y., Optimal design of multistage coilgun, IEEE T Magn, 32, 2, 1996.[9] Marder B., Slingshot- a coilgun design code, SAND2001-1780, 2001.[10] McNab I. R., Launch to space with an electromagnetic railgun, IEEE T Magn, 39, 1, 2003.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Erk İnger

Yayımlanma Tarihi 30 Kasım 2018
Kabul Tarihi 19 Kasım 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA İnger, E. (2018). Ay taşımacılığında elektromanyetik fırlatma teknolojisi ve bor. Journal of Boron, 3(3), 195-200. https://doi.org/10.30728/boron.423381