Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 25 - 30, 16.03.2019
https://doi.org/10.30728/boron.454311

Öz

Kaynakça

  • [1] Wang B., Li X., Wang Y.X., Tu Y.F., Phase Stability and physical properties of manganese borides: A firstprinciples study, J. Phys. Chem. C, 115, 21429–21435, 2011.
  • [2] Liu G., Li J., Chen K., Combustion synthesis of refractory and hard materials: A review, Int. J. Refract. Met. Hard Mater., 39, 90–102, 2013.
  • [3] Kang S. H., Kim D. J., Synthesis of nano-titanium di-boride powders by carbothermal reduction, J. Eur. Ceram. Soc., 27, 715–718, 2007.
  • [4] Barış M., Şimşek T., Taşkaya H., Chattopadhyay A.K., Synthesis of Fe-Fe2B catalysis via solvothermal route for hydrogen generation by hydrolysis of NaBH4, BORON, 3 (1) 51-62, 2018.
  • [5] Y., Zhang J., Zou C., Lin H.T., An L., Zhang F., Wang C., Synthesis of osmium borides by mechanochemical method, J. Am. Chem. Soc., 100 (6), 2419-2428, 2017.
  • [6] Suryanarayana C., Mechanical Alloying and Milling, 1st edition, Marcel Dekker, New York, 2004.
  • [7] Avar B., Ozcan S., Characterization and amorphous phase formation of mechanically alloyed Co60Fe5Ni5Ti25B5 powders, J. Alloys Compd., 650, 53-58, 2015.
  • [8] Suryanarayana C., Phase formation under nonequilibrium processing conditions: rapid solidification processing and mechanical alloying, J. Mater. Sci., 53 (19), 13364–13379, 2018.
  • [9] Avar B., Simsek T., Gogebakan M., Mekanik alaşımlama ile üretilen Nanokristal Fe60Al30Cu10 (at.%) tozların yapısal ve mekanik özellikleri, G.U. J. Sci. Part C, 7 (1) 184-191, 2019.
  • [10] Simsek, T, Baris M, Kalkan B, Mechanochemical processing and microstructural characterization of pure Fe2B nanocrystals, Adv. Powder Technol., 28 (11), 3056-3062, 2017.
  • [11] Adil S., Karati A., Murty B.S., Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12), Ceram. Int., 44 (16), 20105-20110, 2018.
  • [12] Long Y., Zhang J., Zou C., Lin H.T., An L., Zhang F., Wang C., Synthesis of osmium borides by mechanochemical method, J. Am. Ceram. Soc., 100, 2419–2428, 2017.
  • [13] Bilen B., Gürü M., Çakanyildirim Ç., Conversion of KCl into KBH4 by Mechano-Chemical Reaction and its Catalytic Decomposition, Journal of Electronic Materials, 46 (7), 4126–4132, 2017.
  • [14] Kalay S., Yilmaz Z., Sen O., Emanet M., Kazanc E., Çulha M., Synthesis of boron nitride nanotubes and their applications, Beilstein J. Nanotechnol., 6, 4–102, 2015.
  • [15] Mohammad O. T., Golabgir H., Tajizadegan H., Jamshidi A., Mechanochemical behavior of magnesium–boron oxide–melamine ternary system in the synthesis of h-BN nanopowder, Ceram. Int., 42 (5) 6450-6456, 2016.
  • [16] Makarenko G. N., Krushinskaya L. A., Timofeeva I. I., Matsera V. E., Vasil’kovskaya M. A., Uvarova I. V., Formation of diborides of groups iv–vi transition metals during mechanochemical synthesis, Powder Metall. Met. Ceram., 53, 514–521, 2015.
  • [17] Kadomatsu H., Ishii F., Fujiwara H., Magnetization, Lattice Constants and Hydrostatic Pressure Effect on the Curie Temperature of (Co1−xMnx)2B, J. Phys. Soc. Jpn., 47, 1078–1085, 1979.
  • [18] Wong-Ng W., Mc Murdie H. F., Paretzkin B., Zhang Y., Davis K. L., Hubbard C. R., Dragoo A. L., Stewart J. M., Standard X-ray diffraction powder patterns of sixteen ceramic phases, Powder Diffr., 2, 191–201, 1987.
  • [19] Cely A., Tergenius L. E., Lundstrom T. J., Microhardness measurements and phase analytical studies in the MnB system, Powder Diffr., 61, 193–198, 1978.
  • [20] Ishii T., Shimada M., Koizumi M.J., Exchange striction of ferromagnetic solid solution of (Mn1-xTax)3B4, Journal of Applied Physics, 54, 6907, 1983.
  • [21] Andersson S., Carlsson J. O., Crystal Structure of MnB4, Acta Chemica Scandinavica, 24, 1791–1799, 1970.
  • [22] Meng X., Bao K., Zhu P., He Z., Tao Q., Li J., Mao Z., Cui T., Manganese borides synthesized at high pressure and high temperature, J. Appl. Phys., 111, 112616, 2012.
  • [23] Zhu H., Ni C., Zhang F., Du Y., Xiao J. Q., Fabrication and magnetic property of MnB alloy, J. Appl. Phys., 97, 10M512, 2005.
  • [24] Gou H., Steinle G., Bykova E., Nakajima Y., Miyajima N., Li Y., Ovsyannikov S. V., Dubrovinsky L.S., Dubrovinskai N., Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments, Appl. Phys. Lett., (102), 061906, 2013.
  • [25] Piyan C., Simsek T., Kaynar B., Özcan S., Fabrication and Magnetic Properties of MnxB45Co100−x Alloys, J. Supercond. Novel Magn., 29 (8), 2203–2206, 2016.
  • [26] Simsek T., Ozcan S., Structural and Magnetic Properties of MnxB100-x Alloys, IEEE Trans. Magn., 51, 1-1, 2015.
  • [27] L. Lutterotti, MAUD CSD Newslett, IUCr, 24, 2000.
  • [28] Ma S., Bao K., , Tao Q., Zhu P., Ma T., Liu B., Liu Y., Cui T., Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material, Scientific Reports, 7, 1-9, 2017.

Synthesis and characterization of Mn2B nanocrystals by mechanical alloying method

Yıl 2019, , 25 - 30, 16.03.2019
https://doi.org/10.30728/boron.454311

Öz

In this study, elemental Mn and B initial materials were used to synthesize pure Mn2B nanocrystals by ball milling. Milling experiments were conducted with highenergy planetary ball mill in a hardened steel vial with hardened steel balls, under Ar atmosphere at 40:1 ball-to-powder ratio and 300 rpm rotating speed. As synthesized Mn2B nanocrystals phase structures and morphological/microstructural investigation were analyzed by X-Ray diffractometry (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX), respectively. Particle size of Mn2B were calculated as 34.5 nm by Rietveld refinement. Furthermore, the magnetic behavior of nanocrystals were determined by vibrating sample magnetometer (VSM). Mn2B sample shows ferromagnetic behavior at room temperature with saturation magnetization of 13 emu/g and coercivity of 90 Oe.

Kaynakça

  • [1] Wang B., Li X., Wang Y.X., Tu Y.F., Phase Stability and physical properties of manganese borides: A firstprinciples study, J. Phys. Chem. C, 115, 21429–21435, 2011.
  • [2] Liu G., Li J., Chen K., Combustion synthesis of refractory and hard materials: A review, Int. J. Refract. Met. Hard Mater., 39, 90–102, 2013.
  • [3] Kang S. H., Kim D. J., Synthesis of nano-titanium di-boride powders by carbothermal reduction, J. Eur. Ceram. Soc., 27, 715–718, 2007.
  • [4] Barış M., Şimşek T., Taşkaya H., Chattopadhyay A.K., Synthesis of Fe-Fe2B catalysis via solvothermal route for hydrogen generation by hydrolysis of NaBH4, BORON, 3 (1) 51-62, 2018.
  • [5] Y., Zhang J., Zou C., Lin H.T., An L., Zhang F., Wang C., Synthesis of osmium borides by mechanochemical method, J. Am. Chem. Soc., 100 (6), 2419-2428, 2017.
  • [6] Suryanarayana C., Mechanical Alloying and Milling, 1st edition, Marcel Dekker, New York, 2004.
  • [7] Avar B., Ozcan S., Characterization and amorphous phase formation of mechanically alloyed Co60Fe5Ni5Ti25B5 powders, J. Alloys Compd., 650, 53-58, 2015.
  • [8] Suryanarayana C., Phase formation under nonequilibrium processing conditions: rapid solidification processing and mechanical alloying, J. Mater. Sci., 53 (19), 13364–13379, 2018.
  • [9] Avar B., Simsek T., Gogebakan M., Mekanik alaşımlama ile üretilen Nanokristal Fe60Al30Cu10 (at.%) tozların yapısal ve mekanik özellikleri, G.U. J. Sci. Part C, 7 (1) 184-191, 2019.
  • [10] Simsek, T, Baris M, Kalkan B, Mechanochemical processing and microstructural characterization of pure Fe2B nanocrystals, Adv. Powder Technol., 28 (11), 3056-3062, 2017.
  • [11] Adil S., Karati A., Murty B.S., Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12), Ceram. Int., 44 (16), 20105-20110, 2018.
  • [12] Long Y., Zhang J., Zou C., Lin H.T., An L., Zhang F., Wang C., Synthesis of osmium borides by mechanochemical method, J. Am. Ceram. Soc., 100, 2419–2428, 2017.
  • [13] Bilen B., Gürü M., Çakanyildirim Ç., Conversion of KCl into KBH4 by Mechano-Chemical Reaction and its Catalytic Decomposition, Journal of Electronic Materials, 46 (7), 4126–4132, 2017.
  • [14] Kalay S., Yilmaz Z., Sen O., Emanet M., Kazanc E., Çulha M., Synthesis of boron nitride nanotubes and their applications, Beilstein J. Nanotechnol., 6, 4–102, 2015.
  • [15] Mohammad O. T., Golabgir H., Tajizadegan H., Jamshidi A., Mechanochemical behavior of magnesium–boron oxide–melamine ternary system in the synthesis of h-BN nanopowder, Ceram. Int., 42 (5) 6450-6456, 2016.
  • [16] Makarenko G. N., Krushinskaya L. A., Timofeeva I. I., Matsera V. E., Vasil’kovskaya M. A., Uvarova I. V., Formation of diborides of groups iv–vi transition metals during mechanochemical synthesis, Powder Metall. Met. Ceram., 53, 514–521, 2015.
  • [17] Kadomatsu H., Ishii F., Fujiwara H., Magnetization, Lattice Constants and Hydrostatic Pressure Effect on the Curie Temperature of (Co1−xMnx)2B, J. Phys. Soc. Jpn., 47, 1078–1085, 1979.
  • [18] Wong-Ng W., Mc Murdie H. F., Paretzkin B., Zhang Y., Davis K. L., Hubbard C. R., Dragoo A. L., Stewart J. M., Standard X-ray diffraction powder patterns of sixteen ceramic phases, Powder Diffr., 2, 191–201, 1987.
  • [19] Cely A., Tergenius L. E., Lundstrom T. J., Microhardness measurements and phase analytical studies in the MnB system, Powder Diffr., 61, 193–198, 1978.
  • [20] Ishii T., Shimada M., Koizumi M.J., Exchange striction of ferromagnetic solid solution of (Mn1-xTax)3B4, Journal of Applied Physics, 54, 6907, 1983.
  • [21] Andersson S., Carlsson J. O., Crystal Structure of MnB4, Acta Chemica Scandinavica, 24, 1791–1799, 1970.
  • [22] Meng X., Bao K., Zhu P., He Z., Tao Q., Li J., Mao Z., Cui T., Manganese borides synthesized at high pressure and high temperature, J. Appl. Phys., 111, 112616, 2012.
  • [23] Zhu H., Ni C., Zhang F., Du Y., Xiao J. Q., Fabrication and magnetic property of MnB alloy, J. Appl. Phys., 97, 10M512, 2005.
  • [24] Gou H., Steinle G., Bykova E., Nakajima Y., Miyajima N., Li Y., Ovsyannikov S. V., Dubrovinsky L.S., Dubrovinskai N., Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments, Appl. Phys. Lett., (102), 061906, 2013.
  • [25] Piyan C., Simsek T., Kaynar B., Özcan S., Fabrication and Magnetic Properties of MnxB45Co100−x Alloys, J. Supercond. Novel Magn., 29 (8), 2203–2206, 2016.
  • [26] Simsek T., Ozcan S., Structural and Magnetic Properties of MnxB100-x Alloys, IEEE Trans. Magn., 51, 1-1, 2015.
  • [27] L. Lutterotti, MAUD CSD Newslett, IUCr, 24, 2000.
  • [28] Ma S., Bao K., , Tao Q., Zhu P., Ma T., Liu B., Liu Y., Cui T., Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material, Scientific Reports, 7, 1-9, 2017.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Tuncay Şimşek 0000-0002-4683-0152

Telem Şimşek 0000-0003-4852-2230

Şadan Özcan Bu kişi benim 0000-0001-7966-1845

Yayımlanma Tarihi 16 Mart 2019
Kabul Tarihi 11 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Şimşek, T., Şimşek, T., & Özcan, Ş. (2019). Synthesis and characterization of Mn2B nanocrystals by mechanical alloying method. Journal of Boron, 4(1), 25-30. https://doi.org/10.30728/boron.454311