Yıl 2019,
, 196 - 202, 31.12.2019
Aysel Ugur
,
Ozgur Ceylan
,
Rukiye Boran
,
Semih Ayrikcil
Nurdan Sarac
,
Dervis Yilmaz
Kaynakça
- [1] Zago L.B., Danguise E., González C.I., Río M.E., Callegari M., Vitamin A and zinc levels in gastroenterological surgical patients: Relation with inflammation and postoperative complications, Nutr. Hosp., 26 (6), 1462-1468, 2011.
- [2] Atasoy H.B., Ulusoy Z.I.A., The relationship between zinc deficiency and children’s oral health, Pediatr. Dent., 34, 383-386, 2012.
- [3] Roohani N., Hurrell R., Kelishadi R., Schulin R., Zinc and its importance for human health: An integrative review, Journal of Research in Medical Science, 18, 144–157, 2013.
- [4] Lin P.H., Sermersheim M., Li H., Lee P., Steinberg S., Ma J., Zinc in wound healing modulation, Nutrients, 10 (1), 16, 2018.
- [5] World Health Organization, Trace Elements in Human Nutrition and Health. 0–361, 1996.
- [6] Basoglu A., Sevinc M., Birdane M., Boydak M., Efficacy of borax in the prevention of fatty liver in dairy cows, J. Vet. Intern. Med., 16, 732-735, 2002.
- [7] Kabu M., Akosman M.S., Biological Effects of Boron, Rev. Environ. Contam. Toxicol., 225, 57-75, 2013.
- [8] Uluisik I., Karakaya H.C., Koc A., The importance of boron in biological systems, J. Trace Elem. Med. Biol., 45, 156-162, 2018.
- [9] Basoglu A., Baspinar N., Ozturk A.S., Akalin P.P., Effects of long-term boron administration on high-energy diet-induced obesity in rabbits: NMR-based metabonomic evaluation, J. Anim. Vet. Adv., 10 (12), 1512–1515, 2011.
- [10] Hunt C.D., The Biochemical effects of physiologic amounts of dietary boron in animal nutrition models, Environ. Health Perspect., 102 (7), 35-42, 1994.
- [11] Demirci S., Doğan A., Aydın S., Dülger E. Ç., Şahin F., Boron promotes streptozotocin-induced diabetic wound healing: Roles in cell proliferation and migration, growth factor expression, and inflammation, Mol. Cell. Biochem., 417 (1-2), 119-33, 2016.
- [12] Nielsen F. H. Meacham S., Growing Evidence for Human Health Benefits of Boron, J. Evid. Based Complementary Altern. Med., 16 (3), 169-180, 2011.
- [13] Schubert D. M., Alam F., Visi M. Z., Knobler C. B., Structural characterization and chemistry of the industrially important zinc borate, Zn [B3O4(OH)3], Chem. Mater., 15 (4), 866-871, 2003.
- [14] Anonymous, 2019a, http://www.etimaden.gov.tr/en/zinc-borate (15.03.2019).
- [15] Anonymous, 2019b, http://pmep.cce.cornell.edu/profiles/fung-nemat/tcmtb-ziram/zinc-borate/fung-prof-zinc-borate.html (15.03.2019).
- [16] Sghaier M.B., Ismail M.B., Bouhlel I., Ghedira K., Chekir-Ghedir L., Leaf extracts from Teucrium ramosissimum protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant, antigenotoxic. and antiproliferative activity, Environ. Toxicol. Pharmacol., 44, 44-52, 2016.
- [17] Schieber M., Chandel N. S., ROS function in redox signalling and oxidative stress, Current Biology, 24, 453-462, 2014.
- [18] El-Kenawi A., Ruffell B., Inflammation, ROS, and mutagenesis, Cancer Cell, 32, 727-729, 2017.
- [19] Viswanatha G.L.S., Vaidya S.K., Ramesh C., Krishnadas N., Rangappa S., Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna, Asian Pacific Journal of Tropical Medicine, 965-970, 2010.
- [20] Frassinetti S., Croce C.M.D., Caltavuturo L., Longo V., Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae, Food Chem., 135 (3), 2029-2034, 2012.
- [21] Rauter A. P., Dias C., Martins A., Branco I., Neng N.R., Nogueira J. M., Goulart M., Silva F. V. M., Justino J., Trevitt C., Waltho J. P., Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties, Food Chem., 132 (4), 1930-1935, 2012.
- [22] Ebrahimabadi A. H., Mazoochi A., Kashi F. J., Djafari-Bidgoli Z., Batooli H., Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran, Food Chem. Toxicol., 48 (5), 1371-1376, 2010.
- [23] Boran, R., Ugur, A., The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium, Pharm. Biol., 55 (1), 402-405, 2017.
- [24] Mortelmans K., Zeiger E., The Ames Salmonella/microsome mutagenicity assay, Mutat. Res. Fundam. Mol. Mech. Mutagen., 455 (1-2), 29-60, 2000.
- [25] Maron D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test, Mutat. Res. Environ. Mutagen. Relat. Subj., 113 (3-4), 173-215, 1983.
- [26] Valko M., Izakovic M., Mazur M., Rhodes C. J., Telser J., Role of oxygen radicals in DNA damage and cancer incidence, Mol. Cell. Biochem., 266 (1-2), 37-56, 2004.
- [27] Halliwell B., Commentary oxidative stress, nutrition and health, Experimental strategies for optimization of nutritional antioxidant intake in humans, Free Radical Res., 25 (1), 57-74, 1996.
- [28] Halliwell B., Gutteridge J.M., Free radicals in biology and medicine. Oxford University Press, USA, 2015.
- [29] Ince S., Kucukkurt I., Demirel H. H., Acaroz D. A., Akbel E., Cigerci I. H., Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere, 108, 197-204, 2014.
- [30] Coban F. K., Ince S., Kucukkurt I., Demirel H. H., Hazman O., Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats, Drug Chem. Toxicol., 38 (4), 391-399, 2015.
- [31] Zafar H., Ali S., Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma, Arch. Biochem. Biophys., 529 (2), 66-74, 2013.
- [32] Prasad A. S., Zinc is an antioxidant and anti-inflammatory agent: its role in human health, Front. Nutr., 1, 14, 2014.
- [33] Horn R. C., Vargas V. M. F., Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay, Mutagenesis, 18 (2), 113-118, 2003.
- [34] Ames B.N., McCann J., Yamasaki E., Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian- microsome mutagenicity test, Mutation Research/ Environmental Mutat. Res. Environ. Mutagen. Relat. Subj., 31 (6), 347-363, 1975.
- [35] Ghazali A.R., Abdullah R., Ramli N., Rajab N.F., Ahmad-Kamal M.S., Yahya N.A., Mutagenic and antimutagenic activities of Mitragyna speciosa Korth extract using Ames test, J. Med. Plants Res., 5 (8), 1345-1348, 2011.
- [36] Eckhert C. D., Boron stimulates embryonic trout growth, J. Nutr., 128 (12), 2488-2493, 1998.
- [37] European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)., Reproductive and general toxicology of some inorganic borates and risks assessment for human beings, Technical Report, No. 63. Brussels (Belgium): ECETOC; 1995.
- [38] Türkez H., Geyikoǧlu F., Tatar A., Keleş S., Özkan A., Effects of some boron compounds on peripheral human blood, Zeitschrift für Naturforschung C, 62 (11-12), 889-896, 2007.
- [39] Türkez H., Geyikoğlu F., Colak S., The protective effect of boric acid on aluminum-induced hepatotoxicity and genotoxicity in rats, Turk. J. Biol., 35 (3), 293-301, 2011.
- [40] Cantürk Z., Tunali Y., Korkmaz S., Gulbaş Z., Cytotoxic and apoptotic effects of boron compounds on leukemia cell line, Cytotechnology, 68 (1), 87-93, 2016.
- [41] Oguzkan S. B., Turkez H., Karagul B., Cakir U., Ugras H.I., In vitro cytotoxic and genotoxic effects of newly synthesised boron ionic liquids, Biotechnol. Biotechnol. Equip., 33 (1), 86-92, 2019.
- [42] Taşkın I., Şen Ö., Emanet M., Culha M., Yılmaz B., Biocompatibility evaluation of hexagonal boron nitrides on healthy mouse hippocampal cell line and their positive effect on stressed cells, Beilstein Archives, 2019.
- [43] Lu L., Zhang Q., Ren M., Jin E., Hu Q., Zhao C., Effects of Boron on Cytotoxicity, Apoptosis, and Cell Cycle of Cultured Rat Sertoli Cells In vitro, Biol. Trace Elem. Res., 1-8, 2019.
- [44] Deshayes S., Cabral H., Ishii T., Miura Y., Kobayashi S., Yamashita T., Matsumoto A., Miyahara Y., Nishiyama N., Kataoka K., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors, J. Am. Chem. Soc., 135 (41), 15501–15507, 2013.
A new approach for prevention the oxidations and mutations: Zinc borate
Yıl 2019,
, 196 - 202, 31.12.2019
Aysel Ugur
,
Ozgur Ceylan
,
Rukiye Boran
,
Semih Ayrikcil
Nurdan Sarac
,
Dervis Yilmaz
Öz
Zinc
borate is a white crystalline powder
substance with variable composition (34% B2O3, 45% ZnO
and 20% H2O). It is used as a fungus and mildew inhibitor, to fire
proof textiles, and for other uses. Although there are limited studies about
the biologic properties of this compound. The present study was aimed to
investigate the antioxidant and antimutagenic activity of zinc borate and also
to figure out its cytotoxic effect. Antioxidant activity of zinc borate was
determined with β- carotene linoleic acid and DPPH radical scavenging assays.
The mutagenicity and antimutagenic activity was determined with AMES/ Salmonella microsomal test systems using
Salmonella typhimurium TA98 and TA100
strains. The cytotoxic effect of zinc borate was evaluated by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay using
mouse fibroblast L929 cell line. When compared to the control, % inhibition
values of 1 mg/mL zinc borate for DPPH radical scavenging and β- carotene
linoleic acid tests were calculated as 13.50% and 30%, respectively. At the
tested concentrations, zinc borate did not exhibit any mutagenic effect. Zinc
borate exhibited low antimutagenic activity at 0.2 and 0.04 mg/plate
concentrations on S. typhimurium TA98
strain while it exhibited no antimutagenic activity on S. typhimurium TA100 strain. In
vitro toxicity against L929 cell line with IC50 values of zinc
borate were found to be 40.70 µg/mL and 32.93 µg/mL for 24h and 72h,
respectively. In spite of the low DPPH free radical scavenging activity, zinc
borate has found to have moderate total antioxidant activity besides low
antimutagenic potential. Zinc borate has a potential to use for medical purpose
with its antioxidative and antimutagenic properties.
Kaynakça
- [1] Zago L.B., Danguise E., González C.I., Río M.E., Callegari M., Vitamin A and zinc levels in gastroenterological surgical patients: Relation with inflammation and postoperative complications, Nutr. Hosp., 26 (6), 1462-1468, 2011.
- [2] Atasoy H.B., Ulusoy Z.I.A., The relationship between zinc deficiency and children’s oral health, Pediatr. Dent., 34, 383-386, 2012.
- [3] Roohani N., Hurrell R., Kelishadi R., Schulin R., Zinc and its importance for human health: An integrative review, Journal of Research in Medical Science, 18, 144–157, 2013.
- [4] Lin P.H., Sermersheim M., Li H., Lee P., Steinberg S., Ma J., Zinc in wound healing modulation, Nutrients, 10 (1), 16, 2018.
- [5] World Health Organization, Trace Elements in Human Nutrition and Health. 0–361, 1996.
- [6] Basoglu A., Sevinc M., Birdane M., Boydak M., Efficacy of borax in the prevention of fatty liver in dairy cows, J. Vet. Intern. Med., 16, 732-735, 2002.
- [7] Kabu M., Akosman M.S., Biological Effects of Boron, Rev. Environ. Contam. Toxicol., 225, 57-75, 2013.
- [8] Uluisik I., Karakaya H.C., Koc A., The importance of boron in biological systems, J. Trace Elem. Med. Biol., 45, 156-162, 2018.
- [9] Basoglu A., Baspinar N., Ozturk A.S., Akalin P.P., Effects of long-term boron administration on high-energy diet-induced obesity in rabbits: NMR-based metabonomic evaluation, J. Anim. Vet. Adv., 10 (12), 1512–1515, 2011.
- [10] Hunt C.D., The Biochemical effects of physiologic amounts of dietary boron in animal nutrition models, Environ. Health Perspect., 102 (7), 35-42, 1994.
- [11] Demirci S., Doğan A., Aydın S., Dülger E. Ç., Şahin F., Boron promotes streptozotocin-induced diabetic wound healing: Roles in cell proliferation and migration, growth factor expression, and inflammation, Mol. Cell. Biochem., 417 (1-2), 119-33, 2016.
- [12] Nielsen F. H. Meacham S., Growing Evidence for Human Health Benefits of Boron, J. Evid. Based Complementary Altern. Med., 16 (3), 169-180, 2011.
- [13] Schubert D. M., Alam F., Visi M. Z., Knobler C. B., Structural characterization and chemistry of the industrially important zinc borate, Zn [B3O4(OH)3], Chem. Mater., 15 (4), 866-871, 2003.
- [14] Anonymous, 2019a, http://www.etimaden.gov.tr/en/zinc-borate (15.03.2019).
- [15] Anonymous, 2019b, http://pmep.cce.cornell.edu/profiles/fung-nemat/tcmtb-ziram/zinc-borate/fung-prof-zinc-borate.html (15.03.2019).
- [16] Sghaier M.B., Ismail M.B., Bouhlel I., Ghedira K., Chekir-Ghedir L., Leaf extracts from Teucrium ramosissimum protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant, antigenotoxic. and antiproliferative activity, Environ. Toxicol. Pharmacol., 44, 44-52, 2016.
- [17] Schieber M., Chandel N. S., ROS function in redox signalling and oxidative stress, Current Biology, 24, 453-462, 2014.
- [18] El-Kenawi A., Ruffell B., Inflammation, ROS, and mutagenesis, Cancer Cell, 32, 727-729, 2017.
- [19] Viswanatha G.L.S., Vaidya S.K., Ramesh C., Krishnadas N., Rangappa S., Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna, Asian Pacific Journal of Tropical Medicine, 965-970, 2010.
- [20] Frassinetti S., Croce C.M.D., Caltavuturo L., Longo V., Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae, Food Chem., 135 (3), 2029-2034, 2012.
- [21] Rauter A. P., Dias C., Martins A., Branco I., Neng N.R., Nogueira J. M., Goulart M., Silva F. V. M., Justino J., Trevitt C., Waltho J. P., Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties, Food Chem., 132 (4), 1930-1935, 2012.
- [22] Ebrahimabadi A. H., Mazoochi A., Kashi F. J., Djafari-Bidgoli Z., Batooli H., Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran, Food Chem. Toxicol., 48 (5), 1371-1376, 2010.
- [23] Boran, R., Ugur, A., The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium, Pharm. Biol., 55 (1), 402-405, 2017.
- [24] Mortelmans K., Zeiger E., The Ames Salmonella/microsome mutagenicity assay, Mutat. Res. Fundam. Mol. Mech. Mutagen., 455 (1-2), 29-60, 2000.
- [25] Maron D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test, Mutat. Res. Environ. Mutagen. Relat. Subj., 113 (3-4), 173-215, 1983.
- [26] Valko M., Izakovic M., Mazur M., Rhodes C. J., Telser J., Role of oxygen radicals in DNA damage and cancer incidence, Mol. Cell. Biochem., 266 (1-2), 37-56, 2004.
- [27] Halliwell B., Commentary oxidative stress, nutrition and health, Experimental strategies for optimization of nutritional antioxidant intake in humans, Free Radical Res., 25 (1), 57-74, 1996.
- [28] Halliwell B., Gutteridge J.M., Free radicals in biology and medicine. Oxford University Press, USA, 2015.
- [29] Ince S., Kucukkurt I., Demirel H. H., Acaroz D. A., Akbel E., Cigerci I. H., Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere, 108, 197-204, 2014.
- [30] Coban F. K., Ince S., Kucukkurt I., Demirel H. H., Hazman O., Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats, Drug Chem. Toxicol., 38 (4), 391-399, 2015.
- [31] Zafar H., Ali S., Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma, Arch. Biochem. Biophys., 529 (2), 66-74, 2013.
- [32] Prasad A. S., Zinc is an antioxidant and anti-inflammatory agent: its role in human health, Front. Nutr., 1, 14, 2014.
- [33] Horn R. C., Vargas V. M. F., Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay, Mutagenesis, 18 (2), 113-118, 2003.
- [34] Ames B.N., McCann J., Yamasaki E., Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian- microsome mutagenicity test, Mutation Research/ Environmental Mutat. Res. Environ. Mutagen. Relat. Subj., 31 (6), 347-363, 1975.
- [35] Ghazali A.R., Abdullah R., Ramli N., Rajab N.F., Ahmad-Kamal M.S., Yahya N.A., Mutagenic and antimutagenic activities of Mitragyna speciosa Korth extract using Ames test, J. Med. Plants Res., 5 (8), 1345-1348, 2011.
- [36] Eckhert C. D., Boron stimulates embryonic trout growth, J. Nutr., 128 (12), 2488-2493, 1998.
- [37] European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)., Reproductive and general toxicology of some inorganic borates and risks assessment for human beings, Technical Report, No. 63. Brussels (Belgium): ECETOC; 1995.
- [38] Türkez H., Geyikoǧlu F., Tatar A., Keleş S., Özkan A., Effects of some boron compounds on peripheral human blood, Zeitschrift für Naturforschung C, 62 (11-12), 889-896, 2007.
- [39] Türkez H., Geyikoğlu F., Colak S., The protective effect of boric acid on aluminum-induced hepatotoxicity and genotoxicity in rats, Turk. J. Biol., 35 (3), 293-301, 2011.
- [40] Cantürk Z., Tunali Y., Korkmaz S., Gulbaş Z., Cytotoxic and apoptotic effects of boron compounds on leukemia cell line, Cytotechnology, 68 (1), 87-93, 2016.
- [41] Oguzkan S. B., Turkez H., Karagul B., Cakir U., Ugras H.I., In vitro cytotoxic and genotoxic effects of newly synthesised boron ionic liquids, Biotechnol. Biotechnol. Equip., 33 (1), 86-92, 2019.
- [42] Taşkın I., Şen Ö., Emanet M., Culha M., Yılmaz B., Biocompatibility evaluation of hexagonal boron nitrides on healthy mouse hippocampal cell line and their positive effect on stressed cells, Beilstein Archives, 2019.
- [43] Lu L., Zhang Q., Ren M., Jin E., Hu Q., Zhao C., Effects of Boron on Cytotoxicity, Apoptosis, and Cell Cycle of Cultured Rat Sertoli Cells In vitro, Biol. Trace Elem. Res., 1-8, 2019.
- [44] Deshayes S., Cabral H., Ishii T., Miura Y., Kobayashi S., Yamashita T., Matsumoto A., Miyahara Y., Nishiyama N., Kataoka K., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors, J. Am. Chem. Soc., 135 (41), 15501–15507, 2013.