Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor doplu CVD grafen üretimi ve yakıt pili performansı

Yıl 2019, , 141 - 147, 30.09.2019
https://doi.org/10.30728/boron.593606

Öz

Kimyasal Buhar
Biriktirme (CVD) yöntemiyle üretilen grafen yapıların
bor (B), kobalt (Co)-azot (N)- katkı maddeleri ile Proton Elektrolit Membran (PEM) yakıt
pillerinde elektrokatalizör veya destek malzemesi olarak kullanılabilirliği
incelenmiştir. Bor doplamada amonyum boran (H3N-BH3)
doğrudan kullanılırken sodyum borhidrür (NaBH4) dolaylı olarak
kullanılmıştır. Üretilen örnekler elektrokimyasal yöntemler yanında Taramalı
Elektron Mikroskobu (SEM), Geçirimli Elektron Mikroskobu (TEM), X-ışını
Fotoelektron Spektroskopisi (XPS), Raman ve XRD yöntemleri ile de
tanımlanmıştır. Grafen örneklerin elektrokimyasal oksijen indirgeme reaksiyon
(ORR) ölçümleri döner disk elektrot (RDE) yönetimiyle, geliştirilen
elektrotların yakıt pili testleri 5 cm2 aktif alanda yakıt pili test
sistemi ile yapılmıştır. Bor içerikli indirgeme yaklaşımı, yakıt pili
testlerinde PtCo/B/grafen katalizör ile 3000 mA/cm2 seviyelerinde
diğer yaklaşımların 3 katı ve üzeri akım yoğunluğu vermiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

215M302

Teşekkür

“1003-Öncelikli Alanlar Ar-Ge Projeleri Destekleme Programı” kapsamında yürütülen 215M302 kodlu proje TUBITAK tarafından desteklenmiştir.

Kaynakça

  • [1] Rao C. N. R., Gopalakrishnan K., Govindaraj A., Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements, Nano Today, 9, 324-343, 2014.
  • [2] Wang H., Maiyalagan T., Wang X., Review on recent progress in nitrogen-doped Graphene: Synthesis, characterization, and its potential applications, Am. Chem. Soc., 2, 781−794, 2012.
  • [3] Li X. F., Lian K. Y., Liu L., Wu Y., Qiu Q., Jiang J., Deng M., vd, Unraveling the formation mechanism of graphitic nitrogen doping in thermally treated graphene with ammonia, Sci. Rep., 6, 23495, 2016.
  • [4] Yeh M. H., Li Y. S., Chen G. L., Lin L. Y., Li T.J., Chuang H. M., Hsieh C. Y., vd., Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide, Electrochim. Acta, 172, 52-60, 2015.
  • [5] Zhao Y., Hu C., Hu Y., Cheng H., Shi G., Qu L., A versatile, ultralight, nitrogen-doped graphene framework,. Angew. Chem., 51, 11173–11388, 2012.
  • [6] Wu X., Wang Y., Yang P., The field emission properties from the pristine/B-doped graphene-C70 composite, Phys. Lett. A., 381 (24), 2004-2009, 2017.
  • [7] Panchakarla L. S., Govindaraj A., Rao C. N. R., Boron- and nitrogen-doped carbon nanotubes and graphene, Inorg. Chim. Acta, 363, 4163-4174, 2010. [8] Liao C., Zhang M., Niu L., Zheng Z., Yan F., Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes, J. Mater. Chem. B, 1, 3820-3829, 2013. [9] Agnoli S., Favarob M., Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, Mater. Chem. A, 4, 5002-5025, 2016.
  • [10] Mazanek V., Matejkova S., Sedmidubsky D., Pumera M., Sofe Z., One step synthesis of B/N co-doped graphene as highly efficient electrocatalyst for oxygen reduction reaction-synergistic effect of impurities, Chem. Eur. J, 928-936, 2017.
  • [11] Zheng Y., Jiao Y., Ge L., Jaroniec M., Qiao S. Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis, Angew. Chem., 125, 3192 –3198, 2013.
  • [12] Sheng Z. H., Gao H. L., Bao W. J., Wang F. B., Xia X. H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 22, 390-395, 2012.
  • [13] Jing L., Ping S., Zhigang N., Weilin X., Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction, Electrocatalysis, 6, 132–147, 2015.
  • [14] Dong F., Cai Y., Liu C., Liu J., Qiao J., Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis, Int. J. Hydrogen Energy, 43, 12661-12670, 2018. [15] Han J., Zhang Y., Niu F., Chen T., Liu J., Xu Y., Low-cost and highly efficient metal-free electrocatalysts for oxygen reduction reaction: Environment-friendly three-dimensional B, N Co-doped Graphene Aerogels, Electrocatalysis 10, 56–62, 2019.
  • [16] Sahoo M., Sreena K. P., Vinayan B. P., Ramaprabhu S., Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery, Mater. Res. Bull. 61, 383–390, 2015.
  • [17] Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., vd., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angew. Chem. In. Ed. 50, 7132, 2011.
  • [18] Pullamsetty A., Subbiah M., Sundara R., Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells, Mater. Res. Bull., 40 (32), 10251-10261, 2015.
  • [19] Yang H. N., Lee D. C., Park K. W., Kim W. J., Platinum/boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell, Energy, 89, 500-510, 2015. [20] Kepeniene V., Stagniunaite R., Tamasauskaite L., Norkus E., Investigation of the PtCo/graphene and PtCoRu/graphene Catalysts for Oxygen Reduction Reaction, ECS Transactions, 69 (17), 643-650, 2015.
  • [21] Yang S., Zhang F., Gao C., Xia J., Lu L., Wang Z., A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficientmethanol oxidation, J. Electroanal. Chem., 802, 27–32, 2017.
  • [22] Holmes S. M., Balakrishnan P., Kalangi V. S., Zhang X., Hidalgo M. L., Ajayan P. M., Nair R. R., 2D crystals significantly enhance the performance of a working fuel Cell, Adv. Energy Mater., 7, 1601216, 2017.
  • [23] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyacı San F. G., CVD grown graphene as catalyst for acid electrolytes, Int. J. Hydrogen Energy., 43, 10710-10716 2018.
  • [24] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyazı San F. G., Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells, Int. J. Hydrogen Energy., 43, 18572-18577 2018.
  • [25] Golberg D., Bando Y., Han W., Kurashima K., Sato T., Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chem. Phys. Lett., 308, 337-342, 1999.
  • [26] Wang G., Li X., Wang Y., Zheng Z., Dai Z., Qi X., Liu L., vd., interlayer coupling behaviors of boron doped multilayer graphene, J. Phys. Chem. C, 121 (46), 26034-26043, 2017.
  • [27] Sit V., Geanangel R. A., Wendlandt W. W., Thermochimica, Acta 113, 379–382, 1987.

Production of boron-dopped CVD graphene and fuel cell performance

Yıl 2019, , 141 - 147, 30.09.2019
https://doi.org/10.30728/boron.593606

Öz

Graphene, produced by chemical vapor deposition (CVD) and modified with
boron (B), cobalt (Co) and nitrogen (N), was investigated as electrocatalyst
and support material for proton exchange membrane (PEM) fuel cells. Ammonia borane
(H3N-BH3) was used directly as doping agent while sodium
borohydride (NaBH4) was used indirectly.  Samples were characterized, in addition to electrochemical
methods, by scanning electron microscopy (SEM), X-ray photo-electron microscopy
(XPS), Raman spectroscopy and XRD. While rotating disc electrodes (RDE) were
used to characterize oxygen reduction reaction capacity of graphene electrodes,
fuel cell testing was carried out with 5-cm2 active area single
cell. Boron based reduction of catalysts, compare to other approaches, have
resulted 3 times higher current density reaching 3000 mA/cm2 with
PtCo/B/graphene
catalyst
in fuel cell testing.

Proje Numarası

215M302

Kaynakça

  • [1] Rao C. N. R., Gopalakrishnan K., Govindaraj A., Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements, Nano Today, 9, 324-343, 2014.
  • [2] Wang H., Maiyalagan T., Wang X., Review on recent progress in nitrogen-doped Graphene: Synthesis, characterization, and its potential applications, Am. Chem. Soc., 2, 781−794, 2012.
  • [3] Li X. F., Lian K. Y., Liu L., Wu Y., Qiu Q., Jiang J., Deng M., vd, Unraveling the formation mechanism of graphitic nitrogen doping in thermally treated graphene with ammonia, Sci. Rep., 6, 23495, 2016.
  • [4] Yeh M. H., Li Y. S., Chen G. L., Lin L. Y., Li T.J., Chuang H. M., Hsieh C. Y., vd., Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide, Electrochim. Acta, 172, 52-60, 2015.
  • [5] Zhao Y., Hu C., Hu Y., Cheng H., Shi G., Qu L., A versatile, ultralight, nitrogen-doped graphene framework,. Angew. Chem., 51, 11173–11388, 2012.
  • [6] Wu X., Wang Y., Yang P., The field emission properties from the pristine/B-doped graphene-C70 composite, Phys. Lett. A., 381 (24), 2004-2009, 2017.
  • [7] Panchakarla L. S., Govindaraj A., Rao C. N. R., Boron- and nitrogen-doped carbon nanotubes and graphene, Inorg. Chim. Acta, 363, 4163-4174, 2010. [8] Liao C., Zhang M., Niu L., Zheng Z., Yan F., Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes, J. Mater. Chem. B, 1, 3820-3829, 2013. [9] Agnoli S., Favarob M., Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, Mater. Chem. A, 4, 5002-5025, 2016.
  • [10] Mazanek V., Matejkova S., Sedmidubsky D., Pumera M., Sofe Z., One step synthesis of B/N co-doped graphene as highly efficient electrocatalyst for oxygen reduction reaction-synergistic effect of impurities, Chem. Eur. J, 928-936, 2017.
  • [11] Zheng Y., Jiao Y., Ge L., Jaroniec M., Qiao S. Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis, Angew. Chem., 125, 3192 –3198, 2013.
  • [12] Sheng Z. H., Gao H. L., Bao W. J., Wang F. B., Xia X. H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 22, 390-395, 2012.
  • [13] Jing L., Ping S., Zhigang N., Weilin X., Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction, Electrocatalysis, 6, 132–147, 2015.
  • [14] Dong F., Cai Y., Liu C., Liu J., Qiao J., Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis, Int. J. Hydrogen Energy, 43, 12661-12670, 2018. [15] Han J., Zhang Y., Niu F., Chen T., Liu J., Xu Y., Low-cost and highly efficient metal-free electrocatalysts for oxygen reduction reaction: Environment-friendly three-dimensional B, N Co-doped Graphene Aerogels, Electrocatalysis 10, 56–62, 2019.
  • [16] Sahoo M., Sreena K. P., Vinayan B. P., Ramaprabhu S., Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery, Mater. Res. Bull. 61, 383–390, 2015.
  • [17] Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., vd., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angew. Chem. In. Ed. 50, 7132, 2011.
  • [18] Pullamsetty A., Subbiah M., Sundara R., Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells, Mater. Res. Bull., 40 (32), 10251-10261, 2015.
  • [19] Yang H. N., Lee D. C., Park K. W., Kim W. J., Platinum/boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell, Energy, 89, 500-510, 2015. [20] Kepeniene V., Stagniunaite R., Tamasauskaite L., Norkus E., Investigation of the PtCo/graphene and PtCoRu/graphene Catalysts for Oxygen Reduction Reaction, ECS Transactions, 69 (17), 643-650, 2015.
  • [21] Yang S., Zhang F., Gao C., Xia J., Lu L., Wang Z., A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficientmethanol oxidation, J. Electroanal. Chem., 802, 27–32, 2017.
  • [22] Holmes S. M., Balakrishnan P., Kalangi V. S., Zhang X., Hidalgo M. L., Ajayan P. M., Nair R. R., 2D crystals significantly enhance the performance of a working fuel Cell, Adv. Energy Mater., 7, 1601216, 2017.
  • [23] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyacı San F. G., CVD grown graphene as catalyst for acid electrolytes, Int. J. Hydrogen Energy., 43, 10710-10716 2018.
  • [24] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyazı San F. G., Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells, Int. J. Hydrogen Energy., 43, 18572-18577 2018.
  • [25] Golberg D., Bando Y., Han W., Kurashima K., Sato T., Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chem. Phys. Lett., 308, 337-342, 1999.
  • [26] Wang G., Li X., Wang Y., Zheng Z., Dai Z., Qi X., Liu L., vd., interlayer coupling behaviors of boron doped multilayer graphene, J. Phys. Chem. C, 121 (46), 26034-26043, 2017.
  • [27] Sit V., Geanangel R. A., Wendlandt W. W., Thermochimica, Acta 113, 379–382, 1987.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Suha Yazıcı 0000-0002-1449-1811

Fatma Gül Boyacı San Bu kişi benim 0000-0002-5578-1145

Proje Numarası 215M302
Yayımlanma Tarihi 30 Eylül 2019
Kabul Tarihi 17 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Yazıcı, M. S., & San, F. G. B. (2019). Bor doplu CVD grafen üretimi ve yakıt pili performansı. Journal of Boron, 4(3), 141-147. https://doi.org/10.30728/boron.593606