Derleme
BibTex RIS Kaynak Göster

Bor içeren bazı biyoaktif bileşikler

Yıl 2020, , 29 - 39, 29.03.2020
https://doi.org/10.30728/boron.604069

Öz

Bor, biyolojik açıdan önemli bir elementtir ve doğada tek başına bulunmayıp, diğer elementlerle bileşikler halinde yer alır. Özellikle oksijen içeren molekülleri tercih eder. “Auto-inducer 2” gibi hücresel haberleşmede görevli olan molekülden, bortezomib gibi anti-kanser ajanı olarak kullanılan moleküle kadar, geniş yelpazede, içerisinde bor bulunan çeşitli biyo- ve sentetik bor içeren bileşikler son derece önemlidir. Bunların yanında son yıllarda, yeni bir ilaç sınıfı olarak da tanımlanmaya aday, “bor içeren biyoaktif bileşikler” dikkat çekicidir. Bu bileşikler, özellikle anti-mikrobiyal direncin alarm verdiği şimdiki zaman diliminde ve yakın gelecekte, insan sağlığı açısından başvurabileceğimiz moleküler silahlardan biri olmaya namzettir. Birçok bor içeren bileşik elde edilmiş ve bu bileşikler antibakteriyel etkileri açısından birçok bilim insanı tarafından belli bir seviyeye kadar araştırılmıştır. Çalışmalar sonucunda, bor içeren bileşiklerin bazılarının, medikal alanda antibiyotik olarak kullanılmaları önerilmiştir. Bazı bakterilerin spesifik koşullar altında, doğal ortamlarında yüksek seviyede bor içeren metabolitler sentezlediği bilinmektedir. Aplasmomisin, boromisin, tartrolon ve borofisin doğal kaynaklardan elde edilen bor içeren antibiyotiklerdir. Sentetik olarak üretilen, bor içeren biyoaktif bileşikler olan bortezomib, tavaborol, vaborbaktam, benzaksoborol, akoziborol, iksazomib ve krizaborol ise bazı hastalıkların tedavisinde kullanılmaktadır.Bor, birçok canlı grubunda çeşitli fonksiyonları olan bir elementtir. Aynı zamanda ilaç dizaynı açısından da özel bir potansiyele sahiptir. Bu nedenle, bu makalede, bor içeren bazı biyoaktif bileşiklerin potansiyel kullanımlarını değerlendirmek, etki mekanizmalarını anlamak ve moleküllerin yapısal çeşitliliğini incelemek hedeflenmiştir.

Destekleyen Kurum

Muğla SK Üniversitesi BAP birimi

Proje Numarası

18/005

Teşekkür

Finansal desteklerinden dolayı Muğla SK Üniversitesi BAP birimine (proje no 18/005) teşekkür ederiz.

Kaynakça

  • [1] Soriano-Ursua M. A., Das B. C., Trujillo-Ferrara J. G., Boron-containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy, Expert Opinion on Therapeutic Patents, 24 (5), 485-500, 2014.
  • [2] Baker S. J., Ding C. Z., Akama T., Zhang Y. K., Hernandez V., Xia Y., Therapeutic potential of boron-containing compounds, Future Med. Chem., 1 (7), 1275-88, 2009.
  • [3] Chen T. S. S., Chang C. J., Heinz G., Floss H. G., Biosynthesis of the boron-containing macrolide antibiotic aplasmomycin by Streptomyces griseus, J. Am. Chem. Soc., 103, 15, 4565-4568, 1981.
  • [4] Kohno J., Kawahata T., Otake T., Morimoto M., Mori H., Ueba N., Nishio M., vd. Boromycin, an Anti-HIV Antibiotic, Biosci., Biotechnol., Biochem., 60 (6), 1036-1037, 1996.
  • [5] Dunitz J. D., Hawley D. M., Miklos D., White D. N. J., Berlin Y., Marusic R., Prelog V., Structure of boromycin, Helv. Chim. Acta, 54 (6), 1709-1713, 1971.
  • [6] Davidson B. S., New dimensions in natural products research: Cultured marine microorganisms, Curr. Opin. Biotechnol., 6, 284–291, 1995.
  • [7] Irschik H., Schummer D., Gerth K., Höfle G., Reichenbach H., The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum, J. Antibiot., 48 (1), 26-30, 1995.
  • [8] Garcia-Avila A. K., Farfan-García E. D., Guevara-Salazar J. A., Trujillo-Ferrara J. G., Soriano-Ursua M. A., Scope of translational medicine in developing boron-containing compounds for therapeutics, World J. Transl. Med., 6 (1), 1-9, 2017.
  • [9] Kerydin, Anacor Pharmaceuticals, Inc, Palo Alto, CA , 2014.
  • [10] Langley G. W., Cainc R., Tyrrell J.M., Hinchliffe P., Calvopina K., Tooke C. L., Widlake E., vd. Profiling interactions of vaborbactam with metallo-β- actamases, Bioorg. Med. Chem. Lett., 29 (15),1981-1984, 2019.
  • [11] Hackel M. A., Lomovskaya O., Dudley M. N., In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae, Antimicrob Agents Chemother, 62 (1), 1–10, 2018.
  • [12] Raab M. S., Podar K., Breitkreutz I., Richardson P. G., Anderson K. C., Multiple myeloma, Lancet, 374 (9686), 324–39, 2009.
  • [13] Jarnagin K., Chanda S., Coronado D., Crisaborole topical ointment, 2%. a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis, J. Drugs Dermatol, 15(4), 390–396, 2016.
  • [14] Patterson G. M. L., Larsen K. L., Moore R. E., Bioactive naturalproducts from blue-green-algae, J. Appl. Phycol, 6, 151-157, 1994.
  • [15] Todorova A. K., Juttner F., Nostocyclamide-a new macrocyclic, thiazole-containing allelochemical from Nostoc sp.-31 (Cyanobacteria), J. Org. Chem, 60, 7891-7895, 1995.
  • [16] Admi V., Afek U., Carmeli S., Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi, J. Nat. Prod, 59, 396-399, 1996.
  • [17] Eggen M. J., Georg G. I., The cryptophycins: Their synthesis and anticancer activity, Medicinal Res. Rev., 22, 85 -101, 2002.
  • [18] Hemscheidt T., Puglisi M. P., Larsen L. K., Patterson G. M. L., Moore R. E., Rios J. L., Clardy J., Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia, J. Org. Chem., 59 (12), 3467–3471, 1994.
  • [19] Hu H., Brown P. H., Absorption of boron by plant roots, Plant Soil, 193, 49-58, 1997.
  • [20] Hutter R., Keller-Schierlein W., Knusel F., Prelog V., Rodgers G. C., Suter Jr, P., Vogel G., vd. Stoffwechselprodukte von Microorganismen. Boromycin, Helv. Chim. Acta, 50, 1533-1539, 1967.
  • [21] Okazaki T., Kitahara T., Okami Y., Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud, J. Antibiot., 28, 176 /184, 1975.
  • [22] Nakamura H., Iitaka Y., Kitahara T., Okazaki T., Okami Y., Structure of aplasmomycin, J. Antibiot., 30 (9), 714-719, 1977.
  • [23] Sato K., Okazaki T., Maeda K., Okami Y., New antibiotics, aplasmomycins B and C, J. Antibiot., 31 (6), 632-5, 1978.
  • [24] Stout T.J., Clardy J., Pathirana I.C., Fenical W., Aplasmomycin c: Structural studies of a marine antibiotic, Tetrahedron, 47, 3511-3520, 1991.
  • [25] Okami Y., Okazaki T., Kitahara T., Umezawa H., Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud, J. Antibiot., 29, 1019–25, 1976.
  • [26] Shimizu Y., Ogasawara Y., Matsumoto A., Dairi T., Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway, J. Antibiot., (11), 968-970, 2018.
  • [27] Bentley R., Meganathan R., Biosynthesis of vitamin K (menaquinone) in bacteria, Microbiol Rev., 46, 241–80, 1982.
  • [28] Meganathan R., Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms, Vitam Horm., 61, 173–218, 2001.
  • [29] Hiratsuka T., An alternative menaquinone biosynthetic pathway operating in microorganisms, Sci., 321, 1670–3, 2008.
  • [30] Arakawa C., Diversity of the early step of the futalosine pathway, Antimicrob. Agents Chemother., 55, 913–6, 2011.
  • [31] Mahanta N., Fedoseyenko D., Dairi T., Begley T.P., Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme, J. Am. Chem. Soc., 135, 15318–21, 2013.
  • [32] Dembitsky V. M., Smoum R., Abed A. Q., Hijazi A. A., Pergament I., Srebnik M., Natural occurrence of boron-containing compounds in plants, algae and microorganisms, Plant Sci., 163 (5), 931-942, 2002.
  • [33] Moreira W., Aziz D. B., Dick T., Boromycin kills mycobacterial persisters without detectable resistance, Front. Microbiol., 7, 199, 2016.
  • [34] Pache W., Zahner H., Metabolic products of microorganisms, Archiv für Mikrobiologie, 67 (2), 156-165, 1969.
  • [35] Banker R., Carmeli S., Tenuecyclamides A−D., Cyclic Hexapeptides from the Cyanobacterium Nostoc spongiaeforme var, tenue, J. Nat. Prod., 61 (10), 1248-1251, 1998.
  • [36] Elshahawi S. I., Trindade-Silva, Amro Hanora A. E., Han A. W., Flores M. S., Vizzoni V., Schrago C. G., vd. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills, Proc. Natl. Acad. Sci., 110 (4), E295-E304, 2013.
  • [37] Schummer D., Schomburg D., Irschik H., Reichenbach H., Höfle G., Absolute Configuration and Biosynthesis of Tartrolon B, a Boron‐Containing Macrodiolide from Sorangium cellulosum, Antibiotics from Gliding Bacteria, LXXV, Liebigs Annalen, 6, 965-969, 1996.
  • [38] Lewer P., Chapin E. L., Graupner P. R., Gilbert J. R., Peacock C., Tartrolone C:  A Novel Insecticidal Macrodiolide Produced by Streptomyces sp. CP1130, J. Nat. Prod., 66 (1), 143-145, 2003.
  • [39] Perez M., Crespo C., Schleissner C., Rodriguez P., Züniga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 72 (12), 2192–2194, 2009.
  • [40] Schwartz R., Davidson T., Pharmacology, pharmacokinetics, and practical applications of bortezomib, Oncology (Williston Park), 18(14 Suppl 11), 14-21, 2004.
  • [41] Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q. P., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Current Cancer Drug Targets, 11 (3), 239–253, 2011.
  • [42] Patel T., Gores G. J., Kaufmann S. H., The role of proteases during apoptosis, FASEB Journal, 10 (5), 587-97, 1996.
  • [43] Zhivotovsky B., Burgess D. H., Vanags D. M., Orrenius S., Involvement of cellular proteolytic machinery in apoptosis, Biochem. Biophys. Res. Commun., 230 (3), 481-488, 1997.
  • [44] Smith A., Morgan G. J., Davies F. E., Bortezomib (Velcade™) in the Treatment of Multiple Myeloma, Therapeutics and Clinical Risk Management, 2 (3), 271-279, 2006.
  • [45] Curran M., McKeage K., Bortezomib: A review of its use in patients with multiple myeloma, Drugs, 69 (7), 859–888, 2009.
  • [46] Joshi J., Tanner L., Gilchrist L., Bostrom B., Switching to bortezomib may ımprove recovery from severe vincristine neuropathy in pediatric acute lymphoblastic leukemia, Journal of Pediatric Hematology/Oncology, 41 (6), 457–462, 2019.
  • [47] Ludwig H., Khayat D., Giaccone G., Facon T., Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies, Cancer, 104 (9), 1794-807, 2005.
  • [48] Goy A., Younes A., McLaughlin P., Pro B., Romaguera J. E., Hagemeister F., Fayad L., vd. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma, J. Clin. Oncol., 23 (4), 667-75, 2005.
  • [49] Hong Y. S., Hong S. W., Kim S. M., Jin D. H., Shin J. S., Yoon D. H., Kim K. P., vd. Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1, Int. J. Oncol., 41 (1), 76-82, 2012.
  • [50] Baker S. J., Zhang Y. K., Akama T., Lau A., Zhou H., Hernandez V., Mao W., vd. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis, J. Med. Chem., 49 (15), 4447-50, 2006.
  • [51] Elewski B. E., Tosti A., Tavaborole for the treatment of onychomycosis, Expert Opinion on, 15 (10), 1439-1448, 2014.
  • [52] Yaremchuk A., Tukalo M., Crepin T., Zhou H., Yong-Kang Z. H., An Antifungal Agent Inhibits an Aminoacyl-tRNA Synthetase by Trapping tRNA in the Editing Site, Science, 316 (5832), 1759-1761, 2007.
  • [53] Johnson A. P., Woodford N., Global spread of antibiotic resistance: The example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance, J. Med. Microbiol., 62,499–513, 2013.
  • [54] Glasner C., Albiger B., Buist G., Andrasevic T. A., Canton R., Carmeli Y., Friedrich A., vd. Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February, Eurosurveillance, 18 (28), 2013.
  • [55] Capone A., Giannella M., Fortini D., Giordano A., Meledandri M., Ballardini M., Venditti M., vd. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality, Clin. Microbiol. Infect., 19, E23–E30, 2013.
  • [56] Doi Y., Paterson D. L., Carbapenemase-producing Enterobacteriaceae, Seminars in Respiratory and Critical Care Medicine, 36 (1), 74–84, 2015.
  • [57] Lomovskaya O., Sun D., Rubio-Aparicio D., Nelson K., Tsivkovski R., Griffith D. C., Dudley M. N., Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae, Antimicrob. Agents Chemother., 61 (11), 2017.
  • [58] Dhillon S., Meropenem/Vaborbactam: A Review in complicated urinary tract infections, Drugs, 78 (12), 1259–1270, 2018.
  • [59] Codjoe F. S., Donkor E. S., Carbapenem resistance: A review, Med. Sci., 6 (1), 1, 2017.
  • [60] Cho J. C., Zmarlicka M. T., Shaeer K. M., Pardo J., Meropenem/Vaborbactam, the first carbapenem/β-lactamase inhibitor combination, Ann. Pharmacother., 52 (8), 769-779, 2018.
  • [61] Castanheira M., Rhomberg P. R., Flamm R. K., Jones R. N., Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae, Antimicrob Agents Chemother, 60 (9), 5454-8, 2016.
  • [62] Vabomere (combination) monograph for professionals, Drugs.com, Retrieved 6 November 2019.
  • [63] Lee Y., Kim J., Trinh S., Meropenem–Vaborbactam (Vabomere™): Another Option for Carbapenem-Resistant Enterobacteriaceae, P T, 44(3), 110–113, 2019.
  • [64] Castanheira M., Huband M. D., Mendes R. E., Flamm R. K., Meropenem-Vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-Producing, Multidrug-resistant, and extensively drug-resistant Enterobacteriaceae, Antimicrob Agents Chemother. 61(9), 2017.
  • [65] Mao W., Seiradake E., Rock F., Crepin T., Zhou Y., Ip E., Plattner J., vd. Antifungal activity and mechanism of action of a benzoxaborole, AN2718, which is in development for the treatment of tinea pedis, 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, USA, 25-28 October, 2008.
  • [66] Gupta A. K., Chaudhry M., Elewski B., Treatments of tinea pedis, Dermatologic Clinics, 21, 431-462, 2003.
  • [67] Jacobs R. T., Nare B., Wring S. A., Bacchi C., Brun R., Plattner J. J., Beaudet B., vd., Efficacy and pharmacokinetics of SCYX-7158 (AN5568): A novel and potent oxaborole-6-carboxamide selected as a pre-clinical candidate for once-daily oral treatment for stage 2 human african trypanosomiasis, Conference Paper, 2009.
  • [68] Wall R. J., Rico E., Lukac I., Zuccotto F., Elg S., Gilbert I. H., Freund Y., vd. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3, Proceedings of the National Academy of Sciences, 115 (38), 9616-9621, 2018.
  • [69] Field M. C., Horn D., Fairlamb A. H., Ferguson M. A., Gray D. W., Read K. D., De Rycker M., vd. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need, Nat. Rev. Microbiol., 15 (4), 217–231, 2017.
  • [70] Jones D. C., Foth B. J., Urbaniak M. D., Patterson S., Ong H. B., Berriman M., Fairlamb A. H., Genomic and proteomic studies on the mode of action of oxaboroles against the african trypanosome, PLOS Negl.Trop. Dis., 9 (12), e0004299, 2015.
  • [71] Steketee P. C., Vincent I. M., Achcar F., Giordani F., Kim D. H., Creek D. J., Freund Y., vd. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei, PLOS Negl.Trop. Dis., 12 (5), e0006450, 2018.
  • [72] Kupperman E., Lee E. C., Cao Y., Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer, Cancer Res., 70 (5), 1970–80, 2010.
  • [73] Muz B., Ghazarian R. N., Ou M., Luderer M. J., Kusdono H. D., Azab A. K., Spotlight on ixazomib: Potential in the treatment of multiple myeloma, Drug Design, Development and Therapy., 10, 217–26, 2016.
  • [74] Chauhan D., Tian Z., Zou B., Kuhn D., Orlowski R., Raje N., Richardson P., vd. In vitro and In vivo selective antitumor activity of a novel orally bioavailable proteasome ınhibitor MLN9708 against multiple myeloma cells, Clin Cancer Res., 17 (16), 5311–5321, 2011.
  • [75] Obeng E. A., Carlson L. M., Gutman D. M., Harrington W. J, Lee K. P., Boise L. H., Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells, Blood, 107 (12), 4907-16, 2006.
  • [76] Moustafa F., Feldman S. R., A Review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology, Dermatology Online Journal, 20 (5), 22608, 2014.
  • [77] Freund Y. R., Akama T., Alley M. R., Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center, FEBS Lett., 586 (19), 3410–3414, 2012.
  • [78] Kobayashi M., Matoh T., Azuma J., Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls, Plant Physiology, 110: 1017-1020: 1996.
  • [79] Chen X., Schauder S., Potier N., Dorsselaer V. A., Pelczer I., Bassler B. L., Hughson F. M., Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545–549, 2002.
  • .

Bor içeren bazı antibiyotikler

Yıl 2020, , 29 - 39, 29.03.2020
https://doi.org/10.30728/boron.604069

Öz

Bor, biyolojik açıdan önemli bir elementtir
ve doğada tek başına bulunmayıp, diğer elementlerle bileşikler halinde yer
alır. Özellikle oksijen içeren molekülleri tercih eder. Auto-inducer 2 gibi
hücresel haberleşmede görevli olan molekül, Bortezomib gibi anti-kanser ajanı
olarak kullanılan moleküle kadar, geniş yelpazede, içerisinde bor bulunan
çeşitli biyo- ve sentetik bor içeren bileşikler son derece önemlidir. Bunların
yanında son yıllarda, yeni bir antibiyotik sınıfı olarak da tanımlanmaya aday, “bor
içeren antibiyotikler” dikkat çekicidir. Bu bileşikler, özellikle anti-mikrobiyal
direncin alarm verdiği şimdiki zaman diliminde ve yakın gelecekte, insan
sağlığı açısından başvurabileceğimiz moleküler silahlardan biri olmaya
namzettir.



Birçok bor içeren
bileşik elde edilmiş ve bu bileşikler antibakteriyel etkileri açısından birçok
bilim insanı tarafından belli bir seviyeye kadar araştırılmıştır. Çalışmalar
sonucunda, bor içeren bileşiklerin bazılarının, medikal alanda antibiyotik
olarak kullanılmaları önerilmiştir. Bazı bakterilerin spesifik koşullar
altında, doğal ortamlarında yüksek seviyede bor içeren metabolitler
sentezlediği bilinmektedir. Aplasmomisin, Boromisin, Tartrolon ve Borofisin
doğal kaynaklardan elde edilen bor içeren antibiyotiklerdir. Sentetik olarak
üretilen, bor içeren antibiyotikler olan Bortezomib,
Tavaborol, Vaborbaktam, Benzaksoborol ve Akoziborol ise bazı hastalıkların tedavisinde
kullanılmaktadır.



Bor, birçok canlı
grubunda çeşitli fonksiyonları olan bir elementtir. Aynı zamanda ilaç dizaynı
açısından da özel bir potansiyele sahiptir. Bu
nedenle, bu derlemede, bor içeren bazı antibiyotiklerin potansiyel
kullanımlarını değerlendirmek, etki mekanizmalarını anlamak ve moleküllerin
yapısal çeşitliliğini incelemek hedeflenmiştir.

Proje Numarası

18/005

Kaynakça

  • [1] Soriano-Ursua M. A., Das B. C., Trujillo-Ferrara J. G., Boron-containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy, Expert Opinion on Therapeutic Patents, 24 (5), 485-500, 2014.
  • [2] Baker S. J., Ding C. Z., Akama T., Zhang Y. K., Hernandez V., Xia Y., Therapeutic potential of boron-containing compounds, Future Med. Chem., 1 (7), 1275-88, 2009.
  • [3] Chen T. S. S., Chang C. J., Heinz G., Floss H. G., Biosynthesis of the boron-containing macrolide antibiotic aplasmomycin by Streptomyces griseus, J. Am. Chem. Soc., 103, 15, 4565-4568, 1981.
  • [4] Kohno J., Kawahata T., Otake T., Morimoto M., Mori H., Ueba N., Nishio M., vd. Boromycin, an Anti-HIV Antibiotic, Biosci., Biotechnol., Biochem., 60 (6), 1036-1037, 1996.
  • [5] Dunitz J. D., Hawley D. M., Miklos D., White D. N. J., Berlin Y., Marusic R., Prelog V., Structure of boromycin, Helv. Chim. Acta, 54 (6), 1709-1713, 1971.
  • [6] Davidson B. S., New dimensions in natural products research: Cultured marine microorganisms, Curr. Opin. Biotechnol., 6, 284–291, 1995.
  • [7] Irschik H., Schummer D., Gerth K., Höfle G., Reichenbach H., The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum, J. Antibiot., 48 (1), 26-30, 1995.
  • [8] Garcia-Avila A. K., Farfan-García E. D., Guevara-Salazar J. A., Trujillo-Ferrara J. G., Soriano-Ursua M. A., Scope of translational medicine in developing boron-containing compounds for therapeutics, World J. Transl. Med., 6 (1), 1-9, 2017.
  • [9] Kerydin, Anacor Pharmaceuticals, Inc, Palo Alto, CA , 2014.
  • [10] Langley G. W., Cainc R., Tyrrell J.M., Hinchliffe P., Calvopina K., Tooke C. L., Widlake E., vd. Profiling interactions of vaborbactam with metallo-β- actamases, Bioorg. Med. Chem. Lett., 29 (15),1981-1984, 2019.
  • [11] Hackel M. A., Lomovskaya O., Dudley M. N., In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae, Antimicrob Agents Chemother, 62 (1), 1–10, 2018.
  • [12] Raab M. S., Podar K., Breitkreutz I., Richardson P. G., Anderson K. C., Multiple myeloma, Lancet, 374 (9686), 324–39, 2009.
  • [13] Jarnagin K., Chanda S., Coronado D., Crisaborole topical ointment, 2%. a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis, J. Drugs Dermatol, 15(4), 390–396, 2016.
  • [14] Patterson G. M. L., Larsen K. L., Moore R. E., Bioactive naturalproducts from blue-green-algae, J. Appl. Phycol, 6, 151-157, 1994.
  • [15] Todorova A. K., Juttner F., Nostocyclamide-a new macrocyclic, thiazole-containing allelochemical from Nostoc sp.-31 (Cyanobacteria), J. Org. Chem, 60, 7891-7895, 1995.
  • [16] Admi V., Afek U., Carmeli S., Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi, J. Nat. Prod, 59, 396-399, 1996.
  • [17] Eggen M. J., Georg G. I., The cryptophycins: Their synthesis and anticancer activity, Medicinal Res. Rev., 22, 85 -101, 2002.
  • [18] Hemscheidt T., Puglisi M. P., Larsen L. K., Patterson G. M. L., Moore R. E., Rios J. L., Clardy J., Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia, J. Org. Chem., 59 (12), 3467–3471, 1994.
  • [19] Hu H., Brown P. H., Absorption of boron by plant roots, Plant Soil, 193, 49-58, 1997.
  • [20] Hutter R., Keller-Schierlein W., Knusel F., Prelog V., Rodgers G. C., Suter Jr, P., Vogel G., vd. Stoffwechselprodukte von Microorganismen. Boromycin, Helv. Chim. Acta, 50, 1533-1539, 1967.
  • [21] Okazaki T., Kitahara T., Okami Y., Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud, J. Antibiot., 28, 176 /184, 1975.
  • [22] Nakamura H., Iitaka Y., Kitahara T., Okazaki T., Okami Y., Structure of aplasmomycin, J. Antibiot., 30 (9), 714-719, 1977.
  • [23] Sato K., Okazaki T., Maeda K., Okami Y., New antibiotics, aplasmomycins B and C, J. Antibiot., 31 (6), 632-5, 1978.
  • [24] Stout T.J., Clardy J., Pathirana I.C., Fenical W., Aplasmomycin c: Structural studies of a marine antibiotic, Tetrahedron, 47, 3511-3520, 1991.
  • [25] Okami Y., Okazaki T., Kitahara T., Umezawa H., Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud, J. Antibiot., 29, 1019–25, 1976.
  • [26] Shimizu Y., Ogasawara Y., Matsumoto A., Dairi T., Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway, J. Antibiot., (11), 968-970, 2018.
  • [27] Bentley R., Meganathan R., Biosynthesis of vitamin K (menaquinone) in bacteria, Microbiol Rev., 46, 241–80, 1982.
  • [28] Meganathan R., Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms, Vitam Horm., 61, 173–218, 2001.
  • [29] Hiratsuka T., An alternative menaquinone biosynthetic pathway operating in microorganisms, Sci., 321, 1670–3, 2008.
  • [30] Arakawa C., Diversity of the early step of the futalosine pathway, Antimicrob. Agents Chemother., 55, 913–6, 2011.
  • [31] Mahanta N., Fedoseyenko D., Dairi T., Begley T.P., Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme, J. Am. Chem. Soc., 135, 15318–21, 2013.
  • [32] Dembitsky V. M., Smoum R., Abed A. Q., Hijazi A. A., Pergament I., Srebnik M., Natural occurrence of boron-containing compounds in plants, algae and microorganisms, Plant Sci., 163 (5), 931-942, 2002.
  • [33] Moreira W., Aziz D. B., Dick T., Boromycin kills mycobacterial persisters without detectable resistance, Front. Microbiol., 7, 199, 2016.
  • [34] Pache W., Zahner H., Metabolic products of microorganisms, Archiv für Mikrobiologie, 67 (2), 156-165, 1969.
  • [35] Banker R., Carmeli S., Tenuecyclamides A−D., Cyclic Hexapeptides from the Cyanobacterium Nostoc spongiaeforme var, tenue, J. Nat. Prod., 61 (10), 1248-1251, 1998.
  • [36] Elshahawi S. I., Trindade-Silva, Amro Hanora A. E., Han A. W., Flores M. S., Vizzoni V., Schrago C. G., vd. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills, Proc. Natl. Acad. Sci., 110 (4), E295-E304, 2013.
  • [37] Schummer D., Schomburg D., Irschik H., Reichenbach H., Höfle G., Absolute Configuration and Biosynthesis of Tartrolon B, a Boron‐Containing Macrodiolide from Sorangium cellulosum, Antibiotics from Gliding Bacteria, LXXV, Liebigs Annalen, 6, 965-969, 1996.
  • [38] Lewer P., Chapin E. L., Graupner P. R., Gilbert J. R., Peacock C., Tartrolone C:  A Novel Insecticidal Macrodiolide Produced by Streptomyces sp. CP1130, J. Nat. Prod., 66 (1), 143-145, 2003.
  • [39] Perez M., Crespo C., Schleissner C., Rodriguez P., Züniga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 72 (12), 2192–2194, 2009.
  • [40] Schwartz R., Davidson T., Pharmacology, pharmacokinetics, and practical applications of bortezomib, Oncology (Williston Park), 18(14 Suppl 11), 14-21, 2004.
  • [41] Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q. P., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Current Cancer Drug Targets, 11 (3), 239–253, 2011.
  • [42] Patel T., Gores G. J., Kaufmann S. H., The role of proteases during apoptosis, FASEB Journal, 10 (5), 587-97, 1996.
  • [43] Zhivotovsky B., Burgess D. H., Vanags D. M., Orrenius S., Involvement of cellular proteolytic machinery in apoptosis, Biochem. Biophys. Res. Commun., 230 (3), 481-488, 1997.
  • [44] Smith A., Morgan G. J., Davies F. E., Bortezomib (Velcade™) in the Treatment of Multiple Myeloma, Therapeutics and Clinical Risk Management, 2 (3), 271-279, 2006.
  • [45] Curran M., McKeage K., Bortezomib: A review of its use in patients with multiple myeloma, Drugs, 69 (7), 859–888, 2009.
  • [46] Joshi J., Tanner L., Gilchrist L., Bostrom B., Switching to bortezomib may ımprove recovery from severe vincristine neuropathy in pediatric acute lymphoblastic leukemia, Journal of Pediatric Hematology/Oncology, 41 (6), 457–462, 2019.
  • [47] Ludwig H., Khayat D., Giaccone G., Facon T., Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies, Cancer, 104 (9), 1794-807, 2005.
  • [48] Goy A., Younes A., McLaughlin P., Pro B., Romaguera J. E., Hagemeister F., Fayad L., vd. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma, J. Clin. Oncol., 23 (4), 667-75, 2005.
  • [49] Hong Y. S., Hong S. W., Kim S. M., Jin D. H., Shin J. S., Yoon D. H., Kim K. P., vd. Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1, Int. J. Oncol., 41 (1), 76-82, 2012.
  • [50] Baker S. J., Zhang Y. K., Akama T., Lau A., Zhou H., Hernandez V., Mao W., vd. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis, J. Med. Chem., 49 (15), 4447-50, 2006.
  • [51] Elewski B. E., Tosti A., Tavaborole for the treatment of onychomycosis, Expert Opinion on, 15 (10), 1439-1448, 2014.
  • [52] Yaremchuk A., Tukalo M., Crepin T., Zhou H., Yong-Kang Z. H., An Antifungal Agent Inhibits an Aminoacyl-tRNA Synthetase by Trapping tRNA in the Editing Site, Science, 316 (5832), 1759-1761, 2007.
  • [53] Johnson A. P., Woodford N., Global spread of antibiotic resistance: The example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance, J. Med. Microbiol., 62,499–513, 2013.
  • [54] Glasner C., Albiger B., Buist G., Andrasevic T. A., Canton R., Carmeli Y., Friedrich A., vd. Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February, Eurosurveillance, 18 (28), 2013.
  • [55] Capone A., Giannella M., Fortini D., Giordano A., Meledandri M., Ballardini M., Venditti M., vd. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality, Clin. Microbiol. Infect., 19, E23–E30, 2013.
  • [56] Doi Y., Paterson D. L., Carbapenemase-producing Enterobacteriaceae, Seminars in Respiratory and Critical Care Medicine, 36 (1), 74–84, 2015.
  • [57] Lomovskaya O., Sun D., Rubio-Aparicio D., Nelson K., Tsivkovski R., Griffith D. C., Dudley M. N., Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae, Antimicrob. Agents Chemother., 61 (11), 2017.
  • [58] Dhillon S., Meropenem/Vaborbactam: A Review in complicated urinary tract infections, Drugs, 78 (12), 1259–1270, 2018.
  • [59] Codjoe F. S., Donkor E. S., Carbapenem resistance: A review, Med. Sci., 6 (1), 1, 2017.
  • [60] Cho J. C., Zmarlicka M. T., Shaeer K. M., Pardo J., Meropenem/Vaborbactam, the first carbapenem/β-lactamase inhibitor combination, Ann. Pharmacother., 52 (8), 769-779, 2018.
  • [61] Castanheira M., Rhomberg P. R., Flamm R. K., Jones R. N., Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae, Antimicrob Agents Chemother, 60 (9), 5454-8, 2016.
  • [62] Vabomere (combination) monograph for professionals, Drugs.com, Retrieved 6 November 2019.
  • [63] Lee Y., Kim J., Trinh S., Meropenem–Vaborbactam (Vabomere™): Another Option for Carbapenem-Resistant Enterobacteriaceae, P T, 44(3), 110–113, 2019.
  • [64] Castanheira M., Huband M. D., Mendes R. E., Flamm R. K., Meropenem-Vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-Producing, Multidrug-resistant, and extensively drug-resistant Enterobacteriaceae, Antimicrob Agents Chemother. 61(9), 2017.
  • [65] Mao W., Seiradake E., Rock F., Crepin T., Zhou Y., Ip E., Plattner J., vd. Antifungal activity and mechanism of action of a benzoxaborole, AN2718, which is in development for the treatment of tinea pedis, 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, USA, 25-28 October, 2008.
  • [66] Gupta A. K., Chaudhry M., Elewski B., Treatments of tinea pedis, Dermatologic Clinics, 21, 431-462, 2003.
  • [67] Jacobs R. T., Nare B., Wring S. A., Bacchi C., Brun R., Plattner J. J., Beaudet B., vd., Efficacy and pharmacokinetics of SCYX-7158 (AN5568): A novel and potent oxaborole-6-carboxamide selected as a pre-clinical candidate for once-daily oral treatment for stage 2 human african trypanosomiasis, Conference Paper, 2009.
  • [68] Wall R. J., Rico E., Lukac I., Zuccotto F., Elg S., Gilbert I. H., Freund Y., vd. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3, Proceedings of the National Academy of Sciences, 115 (38), 9616-9621, 2018.
  • [69] Field M. C., Horn D., Fairlamb A. H., Ferguson M. A., Gray D. W., Read K. D., De Rycker M., vd. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need, Nat. Rev. Microbiol., 15 (4), 217–231, 2017.
  • [70] Jones D. C., Foth B. J., Urbaniak M. D., Patterson S., Ong H. B., Berriman M., Fairlamb A. H., Genomic and proteomic studies on the mode of action of oxaboroles against the african trypanosome, PLOS Negl.Trop. Dis., 9 (12), e0004299, 2015.
  • [71] Steketee P. C., Vincent I. M., Achcar F., Giordani F., Kim D. H., Creek D. J., Freund Y., vd. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei, PLOS Negl.Trop. Dis., 12 (5), e0006450, 2018.
  • [72] Kupperman E., Lee E. C., Cao Y., Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer, Cancer Res., 70 (5), 1970–80, 2010.
  • [73] Muz B., Ghazarian R. N., Ou M., Luderer M. J., Kusdono H. D., Azab A. K., Spotlight on ixazomib: Potential in the treatment of multiple myeloma, Drug Design, Development and Therapy., 10, 217–26, 2016.
  • [74] Chauhan D., Tian Z., Zou B., Kuhn D., Orlowski R., Raje N., Richardson P., vd. In vitro and In vivo selective antitumor activity of a novel orally bioavailable proteasome ınhibitor MLN9708 against multiple myeloma cells, Clin Cancer Res., 17 (16), 5311–5321, 2011.
  • [75] Obeng E. A., Carlson L. M., Gutman D. M., Harrington W. J, Lee K. P., Boise L. H., Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells, Blood, 107 (12), 4907-16, 2006.
  • [76] Moustafa F., Feldman S. R., A Review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology, Dermatology Online Journal, 20 (5), 22608, 2014.
  • [77] Freund Y. R., Akama T., Alley M. R., Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center, FEBS Lett., 586 (19), 3410–3414, 2012.
  • [78] Kobayashi M., Matoh T., Azuma J., Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls, Plant Physiology, 110: 1017-1020: 1996.
  • [79] Chen X., Schauder S., Potier N., Dorsselaer V. A., Pelczer I., Bassler B. L., Hughson F. M., Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545–549, 2002.
  • .
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Review Makaleler
Yazarlar

Esra Dibek 0000-0002-8110-5466

Anara Babayeva Bu kişi benim 0000-0001-6797-3366

Merve Sezer Kürkçü 0000-0003-0947-2912

Nihan Akgüç Çöl Bu kişi benim 0000-0002-1012-4846

Bekir Çöl 0000-0001-8997-4116

Proje Numarası 18/005
Yayımlanma Tarihi 29 Mart 2020
Kabul Tarihi 22 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Dibek, E., Babayeva, A., Sezer Kürkçü, M., Akgüç Çöl, N., vd. (2020). Bor içeren bazı biyoaktif bileşikler. Journal of Boron, 5(1), 29-39. https://doi.org/10.30728/boron.604069