Araştırma Makalesi
BibTex RIS Kaynak Göster

Theoretical examination of the conformational effect on the molecular structure and electronic properties of the orthorhombic metaboric acid molecule

Yıl 2020, , 91 - 99, 29.06.2020
https://doi.org/10.30728/boron.666064

Öz

In the present study, conformational analysis, Nonlinear Optical (NLO) behavior, vibrational spectra, electronic and the molecular structure of orthorhombic metaboric acid have been investigated comprehensively by using ab initio Hartree Fock (HF) and Density Functional Theory DFT at the B3LYP level with 6-311++G(d, p) basis set. The conformational analysis was performed in detail for the first time as a function of both the φ (B1-O1-H) bond angle and the ψ (O6-B1-O1-H) dihedral angle. The results of calculated potential energy curves show that the molecule has two conformers (C-I and C-II Conformer) with minimum energies in a stable form. C-I conformer is a more stable form than C-II conformer. Linear and nonlinear optical properties of conformer C-I and C-II of the orthorhombic metaboric acid molecule are examined by the determination of the electric dipole moment μ, the polarizability α, and the hyperpolarizability β both methods. The optimized molecular structures of C-I and C-II conformer of the molecule belong to C3h and Cs symmetry, respectively. The dipole moment values for conformer C-II with Cs symmetry obtained using B3LYP/6-311++G(d, p) and HF/6-311++G(d, p) methods were found to be 2.95 and 3.07 Debye, Whereas, for C-I conformer with C3h symmetry, the values obtained using the same methods are found equal (0.0 Debye). Total energy distributions (TED) were calculated to find assignments of calculated vibration modes of both conformers by using VEDA 4f program. It was observed that there is a good agreement between the experimental data in the literature and the calculated structural parameters.  

Kaynakça

  • [1] Kur K., Kowalska-Baron A., Miller E., The DFT study on the electronic structure of boronic acid derivatives and its esters with fructose, Biotechnol. Food. Sci., 82 (1), 29-39, 2018.
  • [2] Neupane L. N., Lohani C. R., Kim J., Lee K. H., A dual role of phenylboronic acid as a receptor for carbohydrates as well as a quencher for neighboring pyrene fluorophore, Tetrahedron, 69, 11057-11063, 2013.
  • [3] Duydu Y., Başaran N., Bolt H.M., Exposure assessment of boron in Bandırma boric acid production plant, J. Trace. Elem. Med. Biol., 26,161-4, 2012.
  • [4] Turkez H., Geyikoglu F., Tatar A., Keles M. S., Kaplan I., The effects of some boron compounds against heavy metal toxicity in human blood, Exp. Toxicol. Pathol., 64, 93-101, 2012.
  • [5] Bezerra da Silva M., dos Santos R. C. R., da Cunha A. M., Valentini A., Pessoa O. D. L., Caetano E. W. S, Freire V. N., Structural, electronic, and optical properties of bulk boric acid 2a and 3t polymorphs: Experiment and density functional theory calculations, Cryst. Growth. Des., 16, 11, 6631-6640, 2016.
  • [6] Demirtaş A., Bor bileşikleri ve tarimda kullanimi, Atatürk Üniv. Ziraat Fak. Derg. 37 (1), 111-115, 2006.
  • [7] Pizzorno L., Nothing boring about boron, Integr. Med. (Encinitas), 14, 35–48, 2015.
  • [8] Groziak M. P., Boron therapeutics on the horizon, Am. J. Ther., 8, 321–328, 2001.
  • [9] Kingma H., The pharmacology and toxicology of boron compounds, Can. Med. Assoc. J., 78, 620–622, 1958.
  • [10] Das B. C., Thapa P., Karki R., Schinke C., Das S., Kambhampati S., Banerjee S. K., Van Veldhuizen P., Verma A., Weiss L. M., Evans T., Boron chemicals in diagnosis and therapeutics, Future Med. Chem., 6, 653–676, 2013.
  • [11] Del Rosso J. Q., Plattner J. J., From the test tube to the treatment room: fundamentals of boron-containing compounds and their relevance to dermatology, J. Clin. Aesthet. Dermatol., 2, 13-21, 2014.
  • [12] Benelli G., Mehlhorn H., Declining malaria, rising of dengue and zika virus: Insights for Mosquito Vector Control, Parasitol. Res., 115, 1747−1754, 2016.
  • [13] Murray N. E. A., Quam, M. B., Wilder-Smith A., Epidemiology of dengue: Past present and future prospects, Clin. Epidemiol., 5, 299−309, 2013.
  • [14] Didier Musso D. J. G., Zika Virus, Clin. Microbiol. Rev., 29, 487−524, 2016.
  • [15] Bhami L. C., Das S. S. M., Boric acid ovicidal trap for the management of aedes species, J. Vector Borne Dis., 52,147−152, 2015.
  • [16] Qualls W. A., Müller, G. C., Traore S. F., Traore M. M., Arheart K. L., Doumbia S., Schlein Y., Kravchenko V. D., Xue R. D., Beier J. C., Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar. J., 14, 301, 1-8, 2015.
  • [17] Yılmaz Aydın, D., Gürü, M., Ayar, B., Çakanyıldırım, Ç., Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği, Boron 1 (1), 33 - 39, 2016.
  • [18] Delpierre S., Willocq B., De Winter J., Dubois P., Ger¬baux P., Raquez J. M., Dynamic ıminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers, Chem. A Eur. J., 23, 6730–6735, 2017.
  • [19] Kalemos A., The nature of the chemical bond in borazine (B3N3H6), boroxine (B3O3H3), carborazine (B2N2C2H6), and related species, Int. J. Quantum Chem., 118, 1-8, 2018.
  • [20] Kracek F. C., Morey G. W., Merwin H. E., The system water-Boron oxide, Amer. J, Sci., 81, 229-234, 1938.
  • [21] Kilday M. V., Prosen E. J., Heats of solution, transition, and formation of three crystalline forms of metaboric acid, journal of research of the national bureau of standards-A, Phys. Chem., 68A, 1, 127-144, 1964.
  • [22] Töre İ., Ay N., Amorf boron oksit eldesi ve Karekterizasyonu, II. Uluslararası bor sempozyumu, Eskişehir-Türkiye, 23-25 Eylül, 2004.
  • [23] Peters C. R., Mılberg M. E., The refined strucrure of orthorhombic metaboric acid, Acts Cryst.,17, 229-234, 1964.
  • [24] Zacharlasen W. H., The crystal structure of monoclinic metaboric acid, Acta Cryst., 16, 385-389, 1963.
  • [25] Zacharlasen W. H., The crystal structure of cubic metaboric acid, Acta Cryst., 16, 380-383, 1963.
  • [26] Bertoluzza A., M, P., Battaglıa M. A., Bonora S., Infrared and raman spectra of orthorhombic, monoclinic and cubic metaboric acid and their relation to the “strength” of the hydrogen bond present, J. Mol. Struct., 64 123-136, 1980.
  • [27] Broadhead P., Newman, A., The vibrational spectra of orthoboric acid and its thermal deconposition products, J. Mol. Struct., 19, 157-171 1971.
  • [28] Sürdem, S., Synthesis and characterization of trimethoxy boroxine, Boron, 4 (3), 148-152, 2019.
  • [29] Bezerra da Silva M., Da Cunha M., Santos R. C. R., Valentini A., Caetano E. W. S., Freireab V. N., Changing the gap type of solid state boric acid by heating: A dispersion-corrected density functionalstudy of α-, β-, and γ-metaboric acid polymorphs, New J. Chem., 41, 15533-15544, 2017.
  • [30] Dennington R., Keith T., Millam J., Semichem Inc., Gauss View, Version 5, Shawnee Mission KS, 2009.
  • [31] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., et al., Gaussian Inc., (Wallingford, CT), 2010.
  • [32] Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behaviour, Phys. Rev. A, 38 (6), 3098–310, 1988.
  • [33] Becke A. D., Density-functional thermochemistry 3. the role of exact exchange, J. Chem. Phys., 98 (7), 5648-5652, 1993.
  • [34] Lee C. T., Yang W. T., Parr R. G., Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev., B, 37, 785-789,1988.
  • [35] Frisch M. J., Pople J. A., Binkley J. S., Selfconsistent molecular orbital methods 25, Supplementary functions for Gaussian basis sets, J. Chem. Phys., 80, 3265-3269, 1984.
  • [36] Driss M., Benhalima N., Megrouss Y., Rachida R., Chouaih A., Hamzaoui F., Theoretical and experimental electrostatic potential around the m-nitrophenol molecule, Molecules, 20, 4042-4054, 2015.
  • [37] Haress N. G., El-Emam A., Al-Deab O. A., Panicker C. Y., Al-Saadi A., Van Alsenols C., Ahmad War J., Vibrational spectroscopic and molecular dockings tudy of 2-benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemo the rapeutic agent, Spectrochim. Acta A, 137, 569-580, 2015.
  • [38] Mulliken R. S., Electronic population analysis on LCAO-MO molecular wave functions, J. Chem. Phys., 23 (10), 1833-1840, 1955.
  • [39] Politzer P., Murray J. S., Concha M. C., The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes, Int. J. Quantum Chem., 88 (1), 19-27, 2002.
  • [40] Jomroz M. H., Vibrational Energy distribution Analysis VEDA4 (Warsaw), 2004.
  • [41] Sundaraganesana N., Ilakiamania S., Saleema H., Wojciechowskib P. M., Michalskab D., FT-raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spec. Acta Part A, 61, 2995-3001, 2005.
  • [42] Parsons J. L., Vibrational spectra of orthorhombic metaboric acid, J. Chem. Phys., 33, 1860-1866, 1960.
  • [43] Uğurlu G., 2-metoksipiridin-3-boronik asitin lineer olmayan özellikleri, konformasyonel, titreşimsel ve elektronik yapısı üzerine substitüent etkisinin kuantum mekanik metodlar ile araştırılması, Erzincan University Journal of Science and Technology. 12(1), 14-24, 2019.

Ortorombik metaborik asit molekülünün moleküler yapısı ve elektronik özellikleri üzerindeki konformasyonel etkinin teorik olarak incelenmesi

Yıl 2020, , 91 - 99, 29.06.2020
https://doi.org/10.30728/boron.666064

Öz

Bu çalışmada, ortorombik metaborik asit molekülünün konformasyon analizi, doğrusal olmayan optik davranışı, titreşim spektrumları, elektronik ve moleküler yapısı ab initio Hartree Fock (HF) ve Yoğunluk Fonksiyonel Teorisi DFT/B3LYP temel seviyesinde (6-311++G(d,p) temel seti kullanılarak kapsamlı bir şekilde araştırıldı. Konformasyon analizi hem φ (B1-O1-H) bağ açısı, hem de ψ (O4-B1-O1-H) dihedral açısının fonksiyonu olarak ilk kez detaylı olarak yapıldı. Hesaplanan potansiyel enerji eğrilerinin sonuçları, molekülün minimum enerjili iki kararlı konformere (C-I ve C-II konformer) sahip olduğunu gösterdi. C-I konformeri C-II konformerinden daha kararlıdır. Ortorombik metaborik asit molekülünün C-I ve C-II konformerlerinin doğrusal ve doğrusal olmayan optik özellikleri, elektrik dipol momenti μ, polarizebilite α ve hiperpolarizebilitesi β her iki yöntem ile incelenmiştir. Molekülün C-I ve C-II konformerlerinin optimize edilmiş moleküler yapıları, sırasıyla, C3h ve Cs simetrisine sahiptir. Cs simetrisine sahip C-II konformeri için B3LYP/6-311++G(d,p) ve HF/6-311++G(d,p) yöntemleri kullanılarak elde edilen dipol momenti değerleri 2,95 ve 3,07 Debyedir. Oysa C3h simetrisine sahip C-I konformeri için aynı yöntemler kullanılarak elde edilen değerlerin eşit olduğu (0,0 Debye) bulunmuştur. Her iki konformerin titreşim modlarının işaretlenmesini bulmak için toplam enerji dağılımı (TED) VEDA 4f programı kullanılarak hesaplanmıştır. Literatürdeki deneysel veriler ile hesaplanan yapısal parametreler arasında iyi bir uyum olduğu görülmüştür.

Kaynakça

  • [1] Kur K., Kowalska-Baron A., Miller E., The DFT study on the electronic structure of boronic acid derivatives and its esters with fructose, Biotechnol. Food. Sci., 82 (1), 29-39, 2018.
  • [2] Neupane L. N., Lohani C. R., Kim J., Lee K. H., A dual role of phenylboronic acid as a receptor for carbohydrates as well as a quencher for neighboring pyrene fluorophore, Tetrahedron, 69, 11057-11063, 2013.
  • [3] Duydu Y., Başaran N., Bolt H.M., Exposure assessment of boron in Bandırma boric acid production plant, J. Trace. Elem. Med. Biol., 26,161-4, 2012.
  • [4] Turkez H., Geyikoglu F., Tatar A., Keles M. S., Kaplan I., The effects of some boron compounds against heavy metal toxicity in human blood, Exp. Toxicol. Pathol., 64, 93-101, 2012.
  • [5] Bezerra da Silva M., dos Santos R. C. R., da Cunha A. M., Valentini A., Pessoa O. D. L., Caetano E. W. S, Freire V. N., Structural, electronic, and optical properties of bulk boric acid 2a and 3t polymorphs: Experiment and density functional theory calculations, Cryst. Growth. Des., 16, 11, 6631-6640, 2016.
  • [6] Demirtaş A., Bor bileşikleri ve tarimda kullanimi, Atatürk Üniv. Ziraat Fak. Derg. 37 (1), 111-115, 2006.
  • [7] Pizzorno L., Nothing boring about boron, Integr. Med. (Encinitas), 14, 35–48, 2015.
  • [8] Groziak M. P., Boron therapeutics on the horizon, Am. J. Ther., 8, 321–328, 2001.
  • [9] Kingma H., The pharmacology and toxicology of boron compounds, Can. Med. Assoc. J., 78, 620–622, 1958.
  • [10] Das B. C., Thapa P., Karki R., Schinke C., Das S., Kambhampati S., Banerjee S. K., Van Veldhuizen P., Verma A., Weiss L. M., Evans T., Boron chemicals in diagnosis and therapeutics, Future Med. Chem., 6, 653–676, 2013.
  • [11] Del Rosso J. Q., Plattner J. J., From the test tube to the treatment room: fundamentals of boron-containing compounds and their relevance to dermatology, J. Clin. Aesthet. Dermatol., 2, 13-21, 2014.
  • [12] Benelli G., Mehlhorn H., Declining malaria, rising of dengue and zika virus: Insights for Mosquito Vector Control, Parasitol. Res., 115, 1747−1754, 2016.
  • [13] Murray N. E. A., Quam, M. B., Wilder-Smith A., Epidemiology of dengue: Past present and future prospects, Clin. Epidemiol., 5, 299−309, 2013.
  • [14] Didier Musso D. J. G., Zika Virus, Clin. Microbiol. Rev., 29, 487−524, 2016.
  • [15] Bhami L. C., Das S. S. M., Boric acid ovicidal trap for the management of aedes species, J. Vector Borne Dis., 52,147−152, 2015.
  • [16] Qualls W. A., Müller, G. C., Traore S. F., Traore M. M., Arheart K. L., Doumbia S., Schlein Y., Kravchenko V. D., Xue R. D., Beier J. C., Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar. J., 14, 301, 1-8, 2015.
  • [17] Yılmaz Aydın, D., Gürü, M., Ayar, B., Çakanyıldırım, Ç., Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği, Boron 1 (1), 33 - 39, 2016.
  • [18] Delpierre S., Willocq B., De Winter J., Dubois P., Ger¬baux P., Raquez J. M., Dynamic ıminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers, Chem. A Eur. J., 23, 6730–6735, 2017.
  • [19] Kalemos A., The nature of the chemical bond in borazine (B3N3H6), boroxine (B3O3H3), carborazine (B2N2C2H6), and related species, Int. J. Quantum Chem., 118, 1-8, 2018.
  • [20] Kracek F. C., Morey G. W., Merwin H. E., The system water-Boron oxide, Amer. J, Sci., 81, 229-234, 1938.
  • [21] Kilday M. V., Prosen E. J., Heats of solution, transition, and formation of three crystalline forms of metaboric acid, journal of research of the national bureau of standards-A, Phys. Chem., 68A, 1, 127-144, 1964.
  • [22] Töre İ., Ay N., Amorf boron oksit eldesi ve Karekterizasyonu, II. Uluslararası bor sempozyumu, Eskişehir-Türkiye, 23-25 Eylül, 2004.
  • [23] Peters C. R., Mılberg M. E., The refined strucrure of orthorhombic metaboric acid, Acts Cryst.,17, 229-234, 1964.
  • [24] Zacharlasen W. H., The crystal structure of monoclinic metaboric acid, Acta Cryst., 16, 385-389, 1963.
  • [25] Zacharlasen W. H., The crystal structure of cubic metaboric acid, Acta Cryst., 16, 380-383, 1963.
  • [26] Bertoluzza A., M, P., Battaglıa M. A., Bonora S., Infrared and raman spectra of orthorhombic, monoclinic and cubic metaboric acid and their relation to the “strength” of the hydrogen bond present, J. Mol. Struct., 64 123-136, 1980.
  • [27] Broadhead P., Newman, A., The vibrational spectra of orthoboric acid and its thermal deconposition products, J. Mol. Struct., 19, 157-171 1971.
  • [28] Sürdem, S., Synthesis and characterization of trimethoxy boroxine, Boron, 4 (3), 148-152, 2019.
  • [29] Bezerra da Silva M., Da Cunha M., Santos R. C. R., Valentini A., Caetano E. W. S., Freireab V. N., Changing the gap type of solid state boric acid by heating: A dispersion-corrected density functionalstudy of α-, β-, and γ-metaboric acid polymorphs, New J. Chem., 41, 15533-15544, 2017.
  • [30] Dennington R., Keith T., Millam J., Semichem Inc., Gauss View, Version 5, Shawnee Mission KS, 2009.
  • [31] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., et al., Gaussian Inc., (Wallingford, CT), 2010.
  • [32] Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behaviour, Phys. Rev. A, 38 (6), 3098–310, 1988.
  • [33] Becke A. D., Density-functional thermochemistry 3. the role of exact exchange, J. Chem. Phys., 98 (7), 5648-5652, 1993.
  • [34] Lee C. T., Yang W. T., Parr R. G., Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev., B, 37, 785-789,1988.
  • [35] Frisch M. J., Pople J. A., Binkley J. S., Selfconsistent molecular orbital methods 25, Supplementary functions for Gaussian basis sets, J. Chem. Phys., 80, 3265-3269, 1984.
  • [36] Driss M., Benhalima N., Megrouss Y., Rachida R., Chouaih A., Hamzaoui F., Theoretical and experimental electrostatic potential around the m-nitrophenol molecule, Molecules, 20, 4042-4054, 2015.
  • [37] Haress N. G., El-Emam A., Al-Deab O. A., Panicker C. Y., Al-Saadi A., Van Alsenols C., Ahmad War J., Vibrational spectroscopic and molecular dockings tudy of 2-benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemo the rapeutic agent, Spectrochim. Acta A, 137, 569-580, 2015.
  • [38] Mulliken R. S., Electronic population analysis on LCAO-MO molecular wave functions, J. Chem. Phys., 23 (10), 1833-1840, 1955.
  • [39] Politzer P., Murray J. S., Concha M. C., The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes, Int. J. Quantum Chem., 88 (1), 19-27, 2002.
  • [40] Jomroz M. H., Vibrational Energy distribution Analysis VEDA4 (Warsaw), 2004.
  • [41] Sundaraganesana N., Ilakiamania S., Saleema H., Wojciechowskib P. M., Michalskab D., FT-raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spec. Acta Part A, 61, 2995-3001, 2005.
  • [42] Parsons J. L., Vibrational spectra of orthorhombic metaboric acid, J. Chem. Phys., 33, 1860-1866, 1960.
  • [43] Uğurlu G., 2-metoksipiridin-3-boronik asitin lineer olmayan özellikleri, konformasyonel, titreşimsel ve elektronik yapısı üzerine substitüent etkisinin kuantum mekanik metodlar ile araştırılması, Erzincan University Journal of Science and Technology. 12(1), 14-24, 2019.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Güventürk Uğurlu

Yayımlanma Tarihi 29 Haziran 2020
Kabul Tarihi 2 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uğurlu, G. (2020). Ortorombik metaborik asit molekülünün moleküler yapısı ve elektronik özellikleri üzerindeki konformasyonel etkinin teorik olarak incelenmesi. Journal of Boron, 5(2), 91-99. https://doi.org/10.30728/boron.666064