Bakır oksit ince filmlere bor katkısının metil mavisi üzerindeki fotokatalitik etkisinin araştırılması
Yıl 2021,
, 283 - 289, 30.06.2021
Süleyman Kerli
,
Mustafa Kavgacı
Öz
Çalışmamızda, Bakır oksit'e farklı oranlarda Bor katkılanarak sprey piroliz yöntemi ile ince filmler sentezlenmiştir. Bu ince filmlerin fiziksel özelliklerini belirlemek için XRD ve SEM ölçümleri yapılmıştır. XRD sonuçları incelendiğinde filmlerin nano yapılı ve monoklinik yapıda olduğu görülmüştür. İnce filmlerin fotokatalitik aktiviteleri incelenmiştir. Fotokatalitik inceleme xenon lamba altında metil mavisi boyar madde kullanılarak yapılmıştır. Elde edilen sonuçlar fotokatalitik bozunma oranlarının yüksek olduğunu göstermiştir. Üretilen ince filmlerin fotokatalitik deney sonuçları, bor katkılama miktarının bozunma verimini ve reaksiyon süresini olumlu etkilediğini göstermiştir. Buradan da Bor katkılı bakır oksit ince filmlerin metil mavisi için etkili bir fotokatalist olduğunu göstermiştir. Bor katkılı bakır oksit ince filmlerin metil mavisi boyar maddesi içeren atık suların fotokatalitik degradasyonu için potansiyel bir aday olduğu kabul edilebilir.
Kaynakça
- Sahu K, Choudhary S, Khan SA, Pandey A, Mohapatra S., Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures and Nano-Objects, 17,92-102,2019.
- Shah NS, Rizwan AD, Khan JA, Sayed M., Khan Z.U.H., Murtaza B, Iqbal J.,Din S.U., Imran M., Nadeem M., Al-Muhtaseb A.H., Muhammad N., Khan H.M., Ghauri M., Zaman G.., Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes, Process Saf Environ Prot., 117,473-482,2018.
- Helal A, Harraz FA, Ismail AA, Sami TM, Ibrahim IA., Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light, Appl Catal B Environ, 213,18-27,2017.
- Dong Y, Xing L, Hu F, Umar A, Wu X., Efficient removal of organic dyes molecules by grain-like α-Fe2O3 nanostructures under visible light irradiation, Vacuum, 150:35-40,2018.
- Hepel M, Hazelton S., Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta ;50(25-26),5278-5291, 2005.
- Sakthivel S, Neppolian B, Shankar M V., Arabindoo B, Palanichamy M, Murugesan V., Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2, Sol Energy Mater Sol Cells, 77(1),65-82,2003.
- Heidari Z, Alizadeh R, Ebadi A, Oturan N, Oturan MA, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Sep Purif Technol, 242,116800,2020.
- Zhang G, Chen D, Li N, Xu Q. Li H., He J., Lu J., Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity, Appl Catal B Environ, 250,313-324,2019.
- Kerli S., Soguksu A.K., Kavgacı M., Production of nickel oxide nanostructure particles and their photocatalytic degradation of different organic dye, Int J Mod Phys B, 2050081,1-8,2020.
- Kerli S, Alver Ü, Eskalen H, Uruş S, Soğuksu A.K., Structural and Morphological Properties of Boron Doped V2O5 Thin Films: Highly Efficient Photocatalytic Degradation of Methyl Blue, Russ J Appl Chem., 92(2),304-309,2019.
- Roza L, Fauzia V, Rahman MYA, Isnaeni I, Putro PA., ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution, Opt Mater (Amst), 109,110360,2020.
- Nguyen DCT, Cho KY, Oh WC., Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes, Sep Purif Technol,211(October 2018),646-657,2019.
- Khiavi ND, Katal R, Eshkalak SK, Masudy-Panah S, Ramakrishna S, Jiangyong H., Visible light driven heterojunction photocatalyst of cuo-cu2o thin films for photocatalytic degradation of organic pollutants, Nanomaterials, 9(7),1001,2019.
- Saravanan V, Shankar P, Mani GK, Rayappan JBB., Growth and characterization of spray pyrolysis deposited copper oxide thin films: Influence of substrate and annealing temperatures, J Anal Appl Pyrolysis, 111,272-277,2015.
- Nalbant A, Ertek Ö, Okur I., Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses, Mater Sci Eng B Solid-State Mater Adv Technol, 178(6),368-374,2013.
- Zhang HL, Zhao GY, Xu LZ., Preparation of the photosensitive copper complex and CuO film pattern, Appl Surf Sci., 274,397-400,2013.
- Koh T, O’Hara E, Gordon MJ., Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures, J Cryst Growth, 363,69-75,2013.
- Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M., Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi, Microb Pathog, 122,84-89,2018.
- Durdu BG, Alver U, Kucukonder A, Sögüt Ö, Kavgaci M., Investigation on zinc selenide and copper selenide thin films produced by chemical bath deposition, Acta Phys Pol A.,124(1),41-45,2013.
- Chiang CY, Aroh K, Ehrman SH., Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting - Part I. CuO nanoparticle preparation, Int J Hydrogen Energy, 37(6),4871-4879,2012.
- Alfaro Cruz MR, Sanchez-Martinez D, Torres-Martínez LM., CuO thin films deposited by DC sputtering and their photocatalytic performance under simulated sunlight, Mater Res Bull, 122,110678,2020.
- Selleswari D, Meena P, Mangalaraj D., Design of CuO/SnO 2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes, J Iran Chem Soc., 16(6),1291-1300,2019.
- Mishra RK, Kumar VB, Victor A, Pulidindi IN, Gedanken A., Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst, Ultrason Sonochem., 56(July 2018),55-62,2019.
- Tawfik WZ, Khalifa ZS, Abdel-wahab MS, Hammad AH., Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors, J Mater Sci Mater Electron, 30(2),1275-1281,2019.
- Molavi R, Sheikhi MH., Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications, Mater Sci Semicond Process, 106,104767,2020.
- Lugo-Ruelas M, Amézaga-Madrid P, Esquivel-Pereyra O, Antunez-Flores W., Piza-Ruiz P., Ornelas-Gutierrez C., Miki-Yoshida M., Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD, J Alloys Compd., 643,546-550,2015.
- Dahrul M, Alatas H, Irzaman., Preparation and Optical Properties Study of CuO thin Film as Applied Solar Cell on LAPAN-IPB Satellite, Procedia Environ Sci., 33,661-667,2016.
- Soğuksu A.K. Hidrotermal Yöntemle Nano Yapılı Metal Oksit Parçacıkların Üretimi , Fotokatalitik ve Elektrokimyasal Özelliklerinin İncelenmesi,Doktora Tezi, Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü,Kahramanmaraş,2019.
- Zhang Z, Wang CC, Zakaria R, Ying JY., Role of particle size in nanocrystalline TiOi-based photocatalysts, J Phys Chem B, 102(52),10871-10878,1998.
Bakır oksit ince filmlere bor katkısının metil mavisi üzerindeki fotokatalitik etkisinin araştırılması
Yıl 2021,
, 283 - 289, 30.06.2021
Süleyman Kerli
,
Mustafa Kavgacı
Öz
Çalışmamızda, Bakır oksit'e farklı oranlarda Bor katkılanarak sprey piroliz yöntemi ile ince filmler sentezlenmiştir. Bu ince filmlerin fiziksel özelliklerini belirlemek için XRD ve SEM ölçümleri yapılmıştır. XRD sonuçları incelendiğinde filmlerin nano yapılı ve monoklinik yapıda olduğu görülmüştür. İnce filmlerin fotokatalitik aktiviteleri incelenmiştir. Fotokatalitik inceleme xenon lamba altında metil mavisi boyar madde kullanılarak yapılmıştır. Elde edilen sonuçlar fotokatalitik bozunma oranlarının yüksek olduğunu göstermiştir. Üretilen ince filmlerin fotokatalitik deney sonuçları, bor katkılama miktarının bozunma verimini ve reaksiyon süresini olumlu etkilediğini göstermiştir. Buradan da Bor katkılı bakır oksit ince filmlerin metil mavisi için etkili bir fotokatalist olduğunu göstermiştir. Bor katkılı bakır oksit ince filmlerin metil mavisi boyar maddesi içeren atık suların fotokatalitik degradasyonu için potansiyel bir aday olduğu kabul edilebilir.
Kaynakça
- Sahu K, Choudhary S, Khan SA, Pandey A, Mohapatra S., Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures and Nano-Objects, 17,92-102,2019.
- Shah NS, Rizwan AD, Khan JA, Sayed M., Khan Z.U.H., Murtaza B, Iqbal J.,Din S.U., Imran M., Nadeem M., Al-Muhtaseb A.H., Muhammad N., Khan H.M., Ghauri M., Zaman G.., Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes, Process Saf Environ Prot., 117,473-482,2018.
- Helal A, Harraz FA, Ismail AA, Sami TM, Ibrahim IA., Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light, Appl Catal B Environ, 213,18-27,2017.
- Dong Y, Xing L, Hu F, Umar A, Wu X., Efficient removal of organic dyes molecules by grain-like α-Fe2O3 nanostructures under visible light irradiation, Vacuum, 150:35-40,2018.
- Hepel M, Hazelton S., Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta ;50(25-26),5278-5291, 2005.
- Sakthivel S, Neppolian B, Shankar M V., Arabindoo B, Palanichamy M, Murugesan V., Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2, Sol Energy Mater Sol Cells, 77(1),65-82,2003.
- Heidari Z, Alizadeh R, Ebadi A, Oturan N, Oturan MA, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Sep Purif Technol, 242,116800,2020.
- Zhang G, Chen D, Li N, Xu Q. Li H., He J., Lu J., Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity, Appl Catal B Environ, 250,313-324,2019.
- Kerli S., Soguksu A.K., Kavgacı M., Production of nickel oxide nanostructure particles and their photocatalytic degradation of different organic dye, Int J Mod Phys B, 2050081,1-8,2020.
- Kerli S, Alver Ü, Eskalen H, Uruş S, Soğuksu A.K., Structural and Morphological Properties of Boron Doped V2O5 Thin Films: Highly Efficient Photocatalytic Degradation of Methyl Blue, Russ J Appl Chem., 92(2),304-309,2019.
- Roza L, Fauzia V, Rahman MYA, Isnaeni I, Putro PA., ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution, Opt Mater (Amst), 109,110360,2020.
- Nguyen DCT, Cho KY, Oh WC., Mesoporous CuO-graphene coating of mesoporous TiO2 for enhanced visible-light photocatalytic activity of organic dyes, Sep Purif Technol,211(October 2018),646-657,2019.
- Khiavi ND, Katal R, Eshkalak SK, Masudy-Panah S, Ramakrishna S, Jiangyong H., Visible light driven heterojunction photocatalyst of cuo-cu2o thin films for photocatalytic degradation of organic pollutants, Nanomaterials, 9(7),1001,2019.
- Saravanan V, Shankar P, Mani GK, Rayappan JBB., Growth and characterization of spray pyrolysis deposited copper oxide thin films: Influence of substrate and annealing temperatures, J Anal Appl Pyrolysis, 111,272-277,2015.
- Nalbant A, Ertek Ö, Okur I., Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses, Mater Sci Eng B Solid-State Mater Adv Technol, 178(6),368-374,2013.
- Zhang HL, Zhao GY, Xu LZ., Preparation of the photosensitive copper complex and CuO film pattern, Appl Surf Sci., 274,397-400,2013.
- Koh T, O’Hara E, Gordon MJ., Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures, J Cryst Growth, 363,69-75,2013.
- Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M., Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi, Microb Pathog, 122,84-89,2018.
- Durdu BG, Alver U, Kucukonder A, Sögüt Ö, Kavgaci M., Investigation on zinc selenide and copper selenide thin films produced by chemical bath deposition, Acta Phys Pol A.,124(1),41-45,2013.
- Chiang CY, Aroh K, Ehrman SH., Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting - Part I. CuO nanoparticle preparation, Int J Hydrogen Energy, 37(6),4871-4879,2012.
- Alfaro Cruz MR, Sanchez-Martinez D, Torres-Martínez LM., CuO thin films deposited by DC sputtering and their photocatalytic performance under simulated sunlight, Mater Res Bull, 122,110678,2020.
- Selleswari D, Meena P, Mangalaraj D., Design of CuO/SnO 2 heterojunction photocatalyst with enhanced UV light-driven photocatalytic activity on congo-red and malachite green dyes, J Iran Chem Soc., 16(6),1291-1300,2019.
- Mishra RK, Kumar VB, Victor A, Pulidindi IN, Gedanken A., Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst, Ultrason Sonochem., 56(July 2018),55-62,2019.
- Tawfik WZ, Khalifa ZS, Abdel-wahab MS, Hammad AH., Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors, J Mater Sci Mater Electron, 30(2),1275-1281,2019.
- Molavi R, Sheikhi MH., Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications, Mater Sci Semicond Process, 106,104767,2020.
- Lugo-Ruelas M, Amézaga-Madrid P, Esquivel-Pereyra O, Antunez-Flores W., Piza-Ruiz P., Ornelas-Gutierrez C., Miki-Yoshida M., Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD, J Alloys Compd., 643,546-550,2015.
- Dahrul M, Alatas H, Irzaman., Preparation and Optical Properties Study of CuO thin Film as Applied Solar Cell on LAPAN-IPB Satellite, Procedia Environ Sci., 33,661-667,2016.
- Soğuksu A.K. Hidrotermal Yöntemle Nano Yapılı Metal Oksit Parçacıkların Üretimi , Fotokatalitik ve Elektrokimyasal Özelliklerinin İncelenmesi,Doktora Tezi, Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü,Kahramanmaraş,2019.
- Zhang Z, Wang CC, Zakaria R, Ying JY., Role of particle size in nanocrystalline TiOi-based photocatalysts, J Phys Chem B, 102(52),10871-10878,1998.