Araştırma Makalesi
BibTex RIS Kaynak Göster

Tinkal minerali ve çinkosulfat heptahidrattan çinko borat kimya bahçesi fiberleri ve çinko borat tozları

Yıl 2021, , 227 - 235, 31.03.2021
https://doi.org/10.30728/boron.809041

Öz

Destekleyen Kurum

TÜBİTAK

Proje Numarası

105M358

Kaynakça

  • [1] Barge L. M., Cardoso S. S. S., Julyan H. E. Cartwright J.H.E., Geoffrey J. T. Cooper G. J., Cronin L., Wit A. D., Doloboff I. J., Escribano,B., Raymond E., Goldstein R. E., Haudin F., Jones D. E. H., Mackay A. L., Maselko J., Pagano J.J., Pantaleone J. , Russell,M.J., Sainz-Díaz,C. I., Steinbock O., David A. Stone,D. A., Tanimoto Y., Thomas N. L., From chemical gardens to chemobrionics, Chem. Rev., 115(16), 8652-8703, 2015.
  • [2] Cartwright J. H. E., Escribano B., Sainz-Díaz C. I., Chemical-Garden formation, morphology, and composition. I. Effect of the nature of the cations, Langmuir, 27(7), 3286-3293, 2011.
  • [3] Cartwright J. H. E., Escribano B., Khokhlov S., Sainz-Diaz C.I., Chemical gardens from silicates and cations of group 2: a comparative study of composition, morphology and microstructure, Phys. Chem. Chem. Phys.13(3),1030-1036, 2011.
  • [4] Glaab F., Kellermeier M., Kunz W., Morallon E., Garcia- Ruiz J. M., Formation and evolution of chemical gradients and potential differences across self-assembling inorganic membranes, Angew. Chem. Int. Ed., 51(18), 4317-4321, 2012.
  • [5] Balkose D., Ozkan F., Kokturk U., Ulutan S., Ulku S., Nisli, G., Characterization of hollow chemical garden fibers from metal salts and water glass, J. Sol-Gel Sci. Technol., 23(3), 253-263, 2002.
  • [6] Parmar K., Bhattacharjee S., Energetically benign synthesis of lanthanum silicate through "silica garden" route and its characterization, Mater. Chem. Phys., 194, 147-152, 2017.
  • [7] Makki R., Al-Humiari M., Hollow microtubes and shells from reactant-loaded polymer blends, Angew. Chem. Int. Ed., 48(46), 8752-8756, 2009.
  • [8] Glaab F., Rieder J., Klein R., Choquesillo-Lazarte D., Melero-Garcia E., Garcia-Ruiz J., Kunz W., Kellermeier M., Precipitation and crystallization kinetics in silica gardens, Chem. Phys.Chem., 18(4), 338-345, 2017.
  • [9] Bormashenko E., Bormashenko Y., Grynyova R., Pogreb R., Schechteret A., How to grow a movable mini-garden in a droplet: Growing chemical gardens in a water and aqueous ethanol solutions droplets deposited on a superhydrophobic surface, Colloid Interface Sci. Commun..7, 12-15, 2015.
  • [10] Bormashenko E., Bormashenko Y., Stanevsky O., Pogreb R., Whymana G., Stein T., Barkayet Z., Template-assisted growth of chemical gardens: Formation of dendrite structures, Colloids Surf., A 289(1-3): 245-249, 2006.
  • [11] Escamilla-Roa E., Cartwright J. H. E., Chemobrionic fabrication of hierarchical self-Assembling nanostructures of copper oxide and hydroxide, Chem. Systems Chem., 1(3), e1900011, 2019.
  • [12] Zhao W. Y., Sakurai K., Realtime observation of diffusing elements in a chemical garden, ACS Omega, 2(8), 4363-4369, 2017.
  • [13] Schubert, D. M. Hydrated zinc borates and their industrial use, Molecules 24(13), Article ID 2419, 2019.
  • [14] Eltepe H. E., Balkose D., Ulku S., Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium. Ind. Eng. Chem. Res. 46(8), 2367-2371, 2007.
  • [15] Gao P., Zhang Y., Synthesis and characterization of zinc borate nanowhiskers and their inflaming retarding effect in polystyrene, J. Nanomater., 2015, Article ID 925060, 2015.
  • [16] Gao Y.H., Liu Z. H. Hydrothermal synthesis and standard molare of Formation of zinc Borate of 4ZnO·B2O3·H2O, J. Chem. Eng. Data, 54, 2789-2790, 2009.
  • [17] Gao Y.H., Liu Z.H. Synthesis and thermochemistry of two zinc borates, Zn2B6O11∙7H2O and Zn3B10O18∙14H2O, Thermochim. Acta, 484, 27-31, 2009.
  • [18] KipcakA. S., Senberber F. T., Derun E M., Tugrul N., Piskin S., Characterization and thermal dehydration kinetics of zinc borates synthesized from zinc sulfate and zinc chloride, Res. Chem. Intermed., 41(11), 9129-9143. 2015.
  • [19] Kipcak A. S., Senberber F. T., Yildirim M., Yuksel S. A., Derun E. M., Tugrul, N., Characterization and physical properties of hydrated zinc borates synthesized from sodium borates, Main Group Met. Chem. 39(1-2), 59-66, 2016.
  • [20] Kipcak, A. S., Acarali N., Senberber F.T., Yildirim M., Koc S.N.T., Yuksel S.A., Piskin, M.B., Derun, E. M., Tugrul, N.,Synthesis of dehydrated zinc borates using the solid-state method: characterization and investigation of the physical properties, Main Group Chem., 15(4), 301-313, 2016.
  • [21] Shi X., Li M., Yang H., Chen S., Yuan L., Zhang K., Sun J., PEG-300 assisted hydrothermal synthesis of 4ZnO·B2O3·H2O nanorods, Mater. Res. Bull. 42, 1649–1656, 2007.
  • [22] Liang P., Tuoheti Z., Liu Z., Controlling the structure and morphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties, RSC Adv., 7, 3695-3703, 2017.
  • [23] Nies N., Beach L., Hulbert R.W., Zinc Borate of Low Hydration and Method for preparing the same. US patent 35549316A, 1967.
  • [24] Shi X., Xiao Y., Yuan L., Sun J., Hydrothermal synthesis and characterizations of 2D and 3D 4ZnO∙B2O3∙H2O nano/microstructures with different morphologies, Powder Technol., 189, 462-465, 2009.
  • [25] Tian Y., Guo Y., Jiang M., Sheng Y., Hari B., Zhang G., Jiang Y., Zhou, B., Zhu, Y., Wang, Z., Synthesis of hydrophobic zinc borate nanodiscs for lubrication, Mater. Lett., 60, 2511–2515, 2006.
  • [26] Savrik S. A., Alp B, Ustun F, Balkose D., Nano zinc borate as a lubricant Additive, JOTCSA, 5(sp. is. 1), 45-52, 2017.
  • [27] Zheng Y., Tian Y., Ma H., Qu Y., Wang Z., An D., Guan,S., Gao, X., Synthesis and performance study of zinc borate nanowhiskers, Colloids Surf. A., 339(1–3), 178-184, 2009.
  • [28] Polat S., Sayan P., Box–Behnken experimental design for zinc borate Zn2B6O11·7H2O, BORON, 5 (3), 152 - 161, 2020.
  • [29] Akdeniz Y., Özmihci F., Duvarci O. Ç., Balköse D., Ülkü S., Kırka tinkal mineralinin sulu çözeltilerindeki kolloidal fazın karakterizasyonu. XI. Kil Simpozyumu, İzmir Turkey, 3-6 September, 2003.
  • [30] Goel N., Sinha N., Kumar B., Growth and properties of sodium tetraborate decahydrate single crystals, Mater. Res. Bull., 48(4), 1632-1636, 2013.
  • [31] Jun L., Shupping X., Shiyang G., FT-IR and raman spectroscopic study of hydrated borates, Spectrochim. Acta., 51A (4), 519-532, 1995.
  • [32] Polat S., Sayan P. Effects of polyelectrolytes on the hardness of borax decahydrate crystals, Journal of Boron, 4 (4), 172 - 179, 2019.
  • [33] Steiger M., Sönke A.. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress,. Geochimica et Cosmochimica Acta, 72 (17), 4291-4306, 2008.
  • [34] Top A. Çetinkaya H. Zinc oxide and zinc hydroxide formation via aqueous precipitation: effect of the preparation route and lysozyme addition, Mater. Chem. Phys., 167, 77-87, 2015.
  • [35] Zhou, J., Santambrogio, G., Infrared spectroscopy of hydrated sulfate dianions, J. Chem. Phys., 125(11), 2006.
  • [36] Linnow, K., Zeunert A., Steiger M. Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature-controlled X-ray diffraction, Anal. Chem., 78, 4683-4689, 2006.
  • [37] Egbuchunam T., Balkose D., Effect of Supercritical ethanol drying on the properties of zinc oxide nanoparticles, Drying Technol., 30,739–749, 2012.
  • [38] Staminirova T., Petrova,N., Kirov G Thermal decomposition of zinc hydroxy-sulfate-hydrate minerals, J Therm Anal Calorim., 125, 85–96, 2016.
  • [39] Bevins R., Namuwite, (Zn,Cu)4SO4(OH)6.4H2O, a new mineral from Wales, Mineral. Mag., 46, 51-54 , 1982.
  • [40] Ersan A. C., Kipcak, A.S., Ozen M.Y., Tugrul N., An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry, Main Group Met. Chem. 43, 7–14, 2020.

Zinc borate chemical garden and zinc borate powders from tincal mineral and zinc sulfate heptahydrate

Yıl 2021, , 227 - 235, 31.03.2021
https://doi.org/10.30728/boron.809041

Öz

The formation of the first membrane, the swelling of the crystal by incoming water from the semipermeable membrane and the formation of irregular shaped branches were observed by optical microscopy, when zinc sulfate heptahydrate crystals were immersed in saturated borax solution. The powders obtained by mixing dilute aqueous borax and zinc sulfate solutions had B, O, Na, S and Zn elements. Presence of Na Zn 1/2B4O7.xH2O was indicated by EDX analysis. The molar ratio of B2O3/ZnO in powders was around 2. FTIR analysis indicated the ratio of absorbance values of asymmetric stretching vibrations of B(3)-O at 1351 cm-1 to that of B(4)-O at 1026 cm-1 increased with their heating time at 90ºC during

their preparation. X-ray diffraction patterns indicated the presence of Zn(OH)2 and Zn 4(OH)6(SO4)·4H2O. The zinc borate compounds in the powders were not crystalline since no sharp peaks related to zinc borates were present in x-ray diffraction diagram. There were two mass loss steps in TG curves of the powders. The first step at 150-350ºC and the second step at 700-950ºC were due to elimination of water and due to decomposition of sulfate ions respectively. The submicron powders were a mixture of zinc borate, Zn(OH)2, Zn4(OH)6(SO4)·4H2O and Na Zn 1/2B4O7.xH2O and they could be used as lubricant additive due to their small particle size of 600 nm. 

Proje Numarası

105M358

Kaynakça

  • [1] Barge L. M., Cardoso S. S. S., Julyan H. E. Cartwright J.H.E., Geoffrey J. T. Cooper G. J., Cronin L., Wit A. D., Doloboff I. J., Escribano,B., Raymond E., Goldstein R. E., Haudin F., Jones D. E. H., Mackay A. L., Maselko J., Pagano J.J., Pantaleone J. , Russell,M.J., Sainz-Díaz,C. I., Steinbock O., David A. Stone,D. A., Tanimoto Y., Thomas N. L., From chemical gardens to chemobrionics, Chem. Rev., 115(16), 8652-8703, 2015.
  • [2] Cartwright J. H. E., Escribano B., Sainz-Díaz C. I., Chemical-Garden formation, morphology, and composition. I. Effect of the nature of the cations, Langmuir, 27(7), 3286-3293, 2011.
  • [3] Cartwright J. H. E., Escribano B., Khokhlov S., Sainz-Diaz C.I., Chemical gardens from silicates and cations of group 2: a comparative study of composition, morphology and microstructure, Phys. Chem. Chem. Phys.13(3),1030-1036, 2011.
  • [4] Glaab F., Kellermeier M., Kunz W., Morallon E., Garcia- Ruiz J. M., Formation and evolution of chemical gradients and potential differences across self-assembling inorganic membranes, Angew. Chem. Int. Ed., 51(18), 4317-4321, 2012.
  • [5] Balkose D., Ozkan F., Kokturk U., Ulutan S., Ulku S., Nisli, G., Characterization of hollow chemical garden fibers from metal salts and water glass, J. Sol-Gel Sci. Technol., 23(3), 253-263, 2002.
  • [6] Parmar K., Bhattacharjee S., Energetically benign synthesis of lanthanum silicate through "silica garden" route and its characterization, Mater. Chem. Phys., 194, 147-152, 2017.
  • [7] Makki R., Al-Humiari M., Hollow microtubes and shells from reactant-loaded polymer blends, Angew. Chem. Int. Ed., 48(46), 8752-8756, 2009.
  • [8] Glaab F., Rieder J., Klein R., Choquesillo-Lazarte D., Melero-Garcia E., Garcia-Ruiz J., Kunz W., Kellermeier M., Precipitation and crystallization kinetics in silica gardens, Chem. Phys.Chem., 18(4), 338-345, 2017.
  • [9] Bormashenko E., Bormashenko Y., Grynyova R., Pogreb R., Schechteret A., How to grow a movable mini-garden in a droplet: Growing chemical gardens in a water and aqueous ethanol solutions droplets deposited on a superhydrophobic surface, Colloid Interface Sci. Commun..7, 12-15, 2015.
  • [10] Bormashenko E., Bormashenko Y., Stanevsky O., Pogreb R., Whymana G., Stein T., Barkayet Z., Template-assisted growth of chemical gardens: Formation of dendrite structures, Colloids Surf., A 289(1-3): 245-249, 2006.
  • [11] Escamilla-Roa E., Cartwright J. H. E., Chemobrionic fabrication of hierarchical self-Assembling nanostructures of copper oxide and hydroxide, Chem. Systems Chem., 1(3), e1900011, 2019.
  • [12] Zhao W. Y., Sakurai K., Realtime observation of diffusing elements in a chemical garden, ACS Omega, 2(8), 4363-4369, 2017.
  • [13] Schubert, D. M. Hydrated zinc borates and their industrial use, Molecules 24(13), Article ID 2419, 2019.
  • [14] Eltepe H. E., Balkose D., Ulku S., Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium. Ind. Eng. Chem. Res. 46(8), 2367-2371, 2007.
  • [15] Gao P., Zhang Y., Synthesis and characterization of zinc borate nanowhiskers and their inflaming retarding effect in polystyrene, J. Nanomater., 2015, Article ID 925060, 2015.
  • [16] Gao Y.H., Liu Z. H. Hydrothermal synthesis and standard molare of Formation of zinc Borate of 4ZnO·B2O3·H2O, J. Chem. Eng. Data, 54, 2789-2790, 2009.
  • [17] Gao Y.H., Liu Z.H. Synthesis and thermochemistry of two zinc borates, Zn2B6O11∙7H2O and Zn3B10O18∙14H2O, Thermochim. Acta, 484, 27-31, 2009.
  • [18] KipcakA. S., Senberber F. T., Derun E M., Tugrul N., Piskin S., Characterization and thermal dehydration kinetics of zinc borates synthesized from zinc sulfate and zinc chloride, Res. Chem. Intermed., 41(11), 9129-9143. 2015.
  • [19] Kipcak A. S., Senberber F. T., Yildirim M., Yuksel S. A., Derun E. M., Tugrul, N., Characterization and physical properties of hydrated zinc borates synthesized from sodium borates, Main Group Met. Chem. 39(1-2), 59-66, 2016.
  • [20] Kipcak, A. S., Acarali N., Senberber F.T., Yildirim M., Koc S.N.T., Yuksel S.A., Piskin, M.B., Derun, E. M., Tugrul, N.,Synthesis of dehydrated zinc borates using the solid-state method: characterization and investigation of the physical properties, Main Group Chem., 15(4), 301-313, 2016.
  • [21] Shi X., Li M., Yang H., Chen S., Yuan L., Zhang K., Sun J., PEG-300 assisted hydrothermal synthesis of 4ZnO·B2O3·H2O nanorods, Mater. Res. Bull. 42, 1649–1656, 2007.
  • [22] Liang P., Tuoheti Z., Liu Z., Controlling the structure and morphology of zinc borate by adjusting the reaction temperature and pH value: formation mechanisms and luminescent properties, RSC Adv., 7, 3695-3703, 2017.
  • [23] Nies N., Beach L., Hulbert R.W., Zinc Borate of Low Hydration and Method for preparing the same. US patent 35549316A, 1967.
  • [24] Shi X., Xiao Y., Yuan L., Sun J., Hydrothermal synthesis and characterizations of 2D and 3D 4ZnO∙B2O3∙H2O nano/microstructures with different morphologies, Powder Technol., 189, 462-465, 2009.
  • [25] Tian Y., Guo Y., Jiang M., Sheng Y., Hari B., Zhang G., Jiang Y., Zhou, B., Zhu, Y., Wang, Z., Synthesis of hydrophobic zinc borate nanodiscs for lubrication, Mater. Lett., 60, 2511–2515, 2006.
  • [26] Savrik S. A., Alp B, Ustun F, Balkose D., Nano zinc borate as a lubricant Additive, JOTCSA, 5(sp. is. 1), 45-52, 2017.
  • [27] Zheng Y., Tian Y., Ma H., Qu Y., Wang Z., An D., Guan,S., Gao, X., Synthesis and performance study of zinc borate nanowhiskers, Colloids Surf. A., 339(1–3), 178-184, 2009.
  • [28] Polat S., Sayan P., Box–Behnken experimental design for zinc borate Zn2B6O11·7H2O, BORON, 5 (3), 152 - 161, 2020.
  • [29] Akdeniz Y., Özmihci F., Duvarci O. Ç., Balköse D., Ülkü S., Kırka tinkal mineralinin sulu çözeltilerindeki kolloidal fazın karakterizasyonu. XI. Kil Simpozyumu, İzmir Turkey, 3-6 September, 2003.
  • [30] Goel N., Sinha N., Kumar B., Growth and properties of sodium tetraborate decahydrate single crystals, Mater. Res. Bull., 48(4), 1632-1636, 2013.
  • [31] Jun L., Shupping X., Shiyang G., FT-IR and raman spectroscopic study of hydrated borates, Spectrochim. Acta., 51A (4), 519-532, 1995.
  • [32] Polat S., Sayan P. Effects of polyelectrolytes on the hardness of borax decahydrate crystals, Journal of Boron, 4 (4), 172 - 179, 2019.
  • [33] Steiger M., Sönke A.. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress,. Geochimica et Cosmochimica Acta, 72 (17), 4291-4306, 2008.
  • [34] Top A. Çetinkaya H. Zinc oxide and zinc hydroxide formation via aqueous precipitation: effect of the preparation route and lysozyme addition, Mater. Chem. Phys., 167, 77-87, 2015.
  • [35] Zhou, J., Santambrogio, G., Infrared spectroscopy of hydrated sulfate dianions, J. Chem. Phys., 125(11), 2006.
  • [36] Linnow, K., Zeunert A., Steiger M. Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature-controlled X-ray diffraction, Anal. Chem., 78, 4683-4689, 2006.
  • [37] Egbuchunam T., Balkose D., Effect of Supercritical ethanol drying on the properties of zinc oxide nanoparticles, Drying Technol., 30,739–749, 2012.
  • [38] Staminirova T., Petrova,N., Kirov G Thermal decomposition of zinc hydroxy-sulfate-hydrate minerals, J Therm Anal Calorim., 125, 85–96, 2016.
  • [39] Bevins R., Namuwite, (Zn,Cu)4SO4(OH)6.4H2O, a new mineral from Wales, Mineral. Mag., 46, 51-54 , 1982.
  • [40] Ersan A. C., Kipcak, A.S., Ozen M.Y., Tugrul N., An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry, Main Group Met. Chem. 43, 7–14, 2020.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Fatma Burcu Alp 0000-0002-0380-2020

Mehmet Gönen 0000-0001-5780-4622

Sevdiye Savrik Bu kişi benim 0000-0002-1402-0569

Devrim Balköse 0000-0002-1117-9486

Proje Numarası 105M358
Yayımlanma Tarihi 31 Mart 2021
Kabul Tarihi 2 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Alp, F. B., Gönen, M., Savrik, S., Balköse, D. (2021). Zinc borate chemical garden and zinc borate powders from tincal mineral and zinc sulfate heptahydrate. Journal of Boron, 6(1), 227-235. https://doi.org/10.30728/boron.809041