Araştırma Makalesi
BibTex RIS Kaynak Göster

The role of B2O3 in lithium-zinc-calcium-silicate glass for improving the radiation shielding competencies: A theoretical evaluation via Phy-X/PSD

Yıl 2021, , 236 - 242, 31.03.2021
https://doi.org/10.30728/boron.841726

Öz

In this study, a preliminary theoretical investigation on lithium-zinc-calcium-silicate (LZCS) glass with a composition of (15-x)Li2O-10ZnO-10CaO-65SiO2-xB2O3 where x: 0, 3, 6, 9, 12, and 15 mol% was performed to understand the effect of B2O3 on physical, optical, and radiation shielding properties. For this purpose, the L15B0 to L0B15 glass series was designed for evaluating glass density (ρglass), refractive index (n), mass attenuation coefficient (µm), and half-value layer (Δ0.5) parameters. The theoretical calculations showed that the increasing amount of B2O3 increased the overall ρglass from 2.9195 to 2.9865 g/cm3. Further, the addition of B2O3 in substitution for Li2O enhanced the n parameter from 1.6882 to 1.7626. Additionally, BatchMaker software aided to investigate viscosity behavior with the increasing temperature. We found out that the melting point of LZCS glass series ascends with the addition of B2O3, namely from 1309 to 1624 ºC. On the other hand, the newly developed Phy-X/PSD software computations paved the way for ascertaining µm and Δ0.5. According to the µm computations, one can clearly state that an increasing trend is observable against the increasing photon energy, but the L0B15 possessed an enhanced shielding ability than that of the remaining at all photon energies. Moreover, we found out that the Δ0.5 increased with respect to the ascending photon energies, however, the Δ0.5 was effectively improved with the addition of B2O3 in the order of L0B155B0. Lastly, a comparison for Δ0.5 variations between L0B15 and commercially available RS253 G18 evidently demonstrated that L0B15 achieves 4.11 cm while RS253 G18 fulfills 4.95 which in turn confirms that the proposed glass system can be utilized in radiation shielding applications. All in all, B2O3 has promising effects on radiation shielding features in LZCS glass series.

Kaynakça

  • [1] Gökmen, U., Özkan, Z., Jamalgolzari, L. E., & Ocak, S. B. (2020). Investigation of radiation attenuation proper¬ties of Al-Cu matrix composites reinforced by different amount of B4C particles. Journal of Boron, 5(3), 124¬130.
  • [2] Rammah, Y S., Olarinoye, I. O., El-Agawany, F. I., & El-Adawy, A. (2020). Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceramics International, 46(17), 27616¬27626.
  • [3] Bektasoglu, M., & Mohammad, M. A. (2020). Investi-gation of radiation shielding properties of TeO2-ZnO- Nb2O5-Gd2O3 glasses at medical diagnostic ener¬gies. Ceramics International, 46(10), 16217-16223.
  • [4] Jawad, A. A., Demirkol, N., Gunoğlu, K., & Akkurt, I. (2019) . Radiation shielding properties of some ceramic wasted samples. International Journal of Environmen¬tal Science and Technology, 16(9), 5039-5042.
  • [5] Saddeek, Y B., Issa, S. A., Guclu, E. A., Kilicoglu, O., Susoy, G., & Tekin, H. O. (2020). Alkaline phosphate glasses and synergistic impact of germanium oxide (GeO2) additive: mechanical and nuclear radiation shielding behaviors. Ceramics International, 46(10), 16781-16797.
  • [6] Gaikwad, D. K., Sayyed, M. I., Botewad, S. N., Obaid,S. S., Khattari, Z. Y, Gawai, U. P, ... & Pawar, P P (2019) . Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses. Journal of Non-Crystalline Solids, 503, 158¬168.
  • [7] Aly, P., El-Kheshen, A. A., Abou-Gabal, H., & Agamy, S. (2020). Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation. Jour¬nal of Physics and Chemistry of Solids, 145, 109521.
  • [8] Vighnesh, K. R., Ramya, B., Nimitha, S., Wagh, A., Sayyed, M. I., Sakar, E., ... & Kamath, S. D. (2020). Structural, optical, thermal, mechanical, morphological & radiation shielding parameters of Pr3+ doped ZAlFB glass systems. Optical Materials, 99, 109512.
  • [9] Al-Hadeethi, Y, & Sayyed, M. I. (2019). Analysis of bo-rosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceramics International, 45(18), 24858-24864.
  • [10] Mirji, R., & Lobo, B. (2017). 24. Radiation shielding materials: A brief review on methods, scope and signif-icance. In National Conference on 'Advances in VLSI and Microelectronics.’In PC Jabin Science College, Huballi, India (pp. 96-100).
  • [11] Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8(2), 55-64.
  • [12] Demir, F., Budak, G., Sahin, R., Karabulut, A., Oltulu, M., Çerifoglu, K., & Un, A. (2010). Radiation transmis¬sion of heavyweight and normal-weight concretes con¬taining colemanite for 6 MV and 18 MV X-rays using linear accelerator. Annals of Nuclear Energy, 37(3), 339-344.
  • [13] Maslehuddin, M., Naqvi, A. A., Ibrahim, M., & Kalaka- da, Z. (2013). Radiation shielding properties of con-crete with electric arc furnace slag aggregates and steel shots. Annals of Nuclear Energy, 53, 192-196.
  • [14] Saidani, K., Ajam, L., & Ouezdou, M. B. (2015). Bar¬ite powder as sand substitution in concrete: Effect on some mechanical properties. Construction and Build-ing Materials, 95, 287-295.
  • [15] Kurtulus, R., & Kavas, T (2020). Investigation on the physical properties, shielding parameters, glass for-mation ability, and cost analysis for waste soda-lime- silica (SLS) glass containing SrO. Radiation Physics and Chemistry, 176, 109090.
  • [16] Shen, Z., Zhu, L., Zhang, Y., Chen, Y, Yang, D., & Song, X. (2017). Effect of CuO addition on crystalli-zation and thermal expansion properties of Li2O-ZnO- SiO2 glass-ceramics. Ceramics International, 43(9), 7099-7105.
  • [17] Goswami, M., Deshpande, S. K., Kumar, R., & Kothi- yal, G. P. (2010). Electrical behaviour of Li2O-ZnO- SiO2 glass and glass-ceramics system. Journal of Physics and Chemistry of Solids, 71(5), 739-744.
  • [18] Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y S. (2019). Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3-Bi2O3-ZnO- CaO glasses. Ceramics International, 45(16), 20724-20732.
  • [19]Singh, K., Singh, H., Sharma, G., Gerward, L., Khan- na, A., Kumar, R., ... & Sahota, H. S. (2005). Gamma- ray shielding properties of CaO-SrO-B2O3 glasses.Radiation Physics and Chemistry, 72(2-3), 225-228.
  • [20] Abouhaswa, A. S., & Kavaz, E. (2020). A novel B2O3- Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceramics Inter-national, 46(10), 16166-16177.
  • [21] Boron in the world. (2020). Etimaden. Retrieved De-cember 15, 2020 from https://www.etimaden.gov.tr/en/ boron-in-the-world.
  • [22] Reserves. (2018). TENMAK BOREN. Retrieved De-cember 15, 2020 from https://www.boren.gov.tr/Sayfa/ reserves/103.
  • [23] Yalcin, S., Aktas, B., & Yilmaz, D. (2019). Radiation shielding properties of Cerium oxide and erbium oxide doped obsidian glass. Radiation Physics and Chemis¬try, 160, 83-88.
  • [24] Sayyed, M. I., Lakshminarayana, G., Moghaddasi, M., Kityk, I. V., & Mahdi, M. A. (2018). Physical properties, optical band gaps and radiation shielding parameters exploration for Dy3+-doped alkali/mixed alkali multi-component borate glasses. Glass Physics and Chem-istry, 44(4), 279-291.
  • [25] Rashad, M., Ali, A. M., Sayyed, M. I., Somaily, H. H., Algarni, H., & Rammah, Y S. (2020). Radiation atten-uation and optical features of lithium borate glasses containing barium: B2O3 Li2O BaO. Ceramics Inter-national, 46(13), 21000-21007.
  • [26] Khodadadi, A., & Taherian, R. (2020). Investigation on the radiation shielding properties of lead silicate glass-es modified by ZnO and BaO. Materials Chemistry and Physics, 251, 123136.
  • [27] Çetin, B., Yalçin, Ç., & Albaçkara, M. (2017). Investi-gation of radiation shielding properties of soda-lime- silica glasses doped with different food materials. Acta Physica Polonica, A., 132(3), 988-990.
  • [28] Sayyed, M. I., Elmahroug, Y., Elbashir, B. O., & Issa, S. A. (2017). Gamma-ray shielding properties of zinc oxide soda lime silica glasses. Journal of Materials Science: Materials in Electronics, 28(5), 4064-4074.
  • [29] Inaba, S., & Fujino, S. (2010). Empirical equation for calculating the density of oxide glasses. Journal of the American Ceramic Society, 93(1), 217-220.
  • [30] Thombare, M., Joat, R., THombre, D., & Mahavidya- laya, V. B. (2016). Glasses study physical properties of sodiumborophosphate. International Journal of En-gineering Science, 8482.
  • [31] BatchMaker® Batch Calculation & Glass Development. (2020) . ilis GmbH. Retrieved December 15, 2020 from https://www.ilis.de/en/batchmaker.html.
  • [32] Lakatos, C. Johansson, L. G., & Simmingskold, B. (1972). Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the com-position range of technical glasses. Glass Technology- European Journal of Glass Science and Technology Part A, 13(3), 88-95.
  • [33] Fluegel, A. (2007). Glass viscosity calculation based on a global statistical modelling approach. Glass Tech- nology-European Journal of Glass Science and Tech-nology Part A, 48(1), 13-30.
  • [34] Al-Hadeethi, Y., & Sayyed, M. I. (2020). A compre-hensive study on the effect of TeO2 on the radiation shielding properties of TeO2-B2O3-Bi2O3-LiF-SrCl2 glass system using Phy-X/PSD software. Ceramics In-ternational, 46(5), 6136-6140.
  • [35] Al-Hadeethi, Y, Sayyed, M. I., Kaewkhao, J., Askin, A., Raffah, B. M., Mkawi, E. M., & Rajaramakrishna, R. (2019). Physical, structural, optical, and radiation shielding properties of B2O3-Gd2O3-Y2O3 glass sys-tem. Applied Physics A, 125(12), 1-7.
  • [36] Wahab, E. A., Shaaban, K. S., & Elsaman, R. (2019). Radiation shielding and physical properties of lead bo-rate glass-doped ZrO2 nanoparticles. Applied Physics A, 125(12), 1-15.
  • [37] Susoy, G. (2020). Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O-B2O3-P2O5- TeO2 glass-system. Ceramics International, 46(3), 3844-3854.
  • [38] Kumar, A. (2017). Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiation Physics and Chemistry, 136, 50-53.
  • [39] Lakshminarayana, G., Elmahroug, Y, Kumar, A., Dong, M. G., Lee, D. E., Yoon, J., & Park, T (2020). TeO2-B2O3-ZnO-La2O3 glasses: Y-ray and neutron attenuation characteristics analysis by WinXCOM program, MCNP5, Geant4, and Penelope simulation codes. Ceramics International, 46(10), 16620-16635.
  • [40] Al-Hadeethi, Y, Sayyed, M. I., Mohammed, H., & Ri- mondini, L. (2020). X-ray photons attenuation charac-teristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257.
  • [41] Radiation Shielding Glasses for Industrial Applications. (2020) . Schott AG. Retrieved December 15, 2020 from https://www.schott.com/advanced_optics/english/ products/optical-materials/specialmaterials/radiation- shielding-glasses/index.html.

Radyasyondan korunma yetkinliklerini geliştirmek için B2O3 ilavesinin lityum-çinko-kalsiyum-silikat camındaki rolü

Yıl 2021, , 236 - 242, 31.03.2021
https://doi.org/10.30728/boron.841726

Öz

Bu çalışmada, (15-x)Li2O-10ZnO-10CaO-65SiO2-xB2O3 (x: 0, 3, 6, 9, 12 ve 15 mol %) bileşimine sahip bir lityum-çinko-kalsiyum-silikat (LZCS) cam sistemi, B2O3 ilavesinin fiziksel, optik ve radyasyon koruma özellikleri üzerindeki etkisini anlamak için incelenmiştir. Bu amaçla, L15B0 ila L0B15 cam serisi, cam yoğunluğu (ρglass), kırılma indisi (n), kütle zayıflama katsayısı (µm) ve yarı değer katmanı (Δ0.5) parametrelerini değerlendirmek için tasarlanmıştır. Teorik hesaplamalar, artan B2O3 miktarının cam yoğunlğunu 2,9195'ten 2,9865 g/cm3 değerine çıkardığını göstermiştir. Ayrıca, Li2O yerine B2O3 eklenmesi, n parametresini 1,6882'den 1,7626'ya yükseltmiştir. Ek olarak, BatchMaker yazılımı artan sıcaklıkla birlikte viskozite davranışını araştırmayı sağlamıştır. LZCS cam serisinin erime noktasının B2O3 ilavesiyle yükseldiği tespit edildi. Öte yandan, yeni geliştirilen Phy-X/PSD yazılım hesaplamaları, µm ve Δ0.5 parametrelerinin belirlenmesinin yolunu açtı. LZCS cam sistemine B2O3 eklenmesi nedeniyle Δ0.5 azalan bir davranışa sahipken µm artan bir eğilim ortaya koydu. Dahası, L0B15 serisi, piyasada satılan RS 253 G15 cama göre daha iyi radyasyon koruma özellikleri sağladı. Sonuç olarak, B2O3 ilavesinin LZCS cam serisindeki radyasyondan korunma kabiliyeti üzerinde umut verici etkilere sahip olduğu belirlenmiştir.

Kaynakça

  • [1] Gökmen, U., Özkan, Z., Jamalgolzari, L. E., & Ocak, S. B. (2020). Investigation of radiation attenuation proper¬ties of Al-Cu matrix composites reinforced by different amount of B4C particles. Journal of Boron, 5(3), 124¬130.
  • [2] Rammah, Y S., Olarinoye, I. O., El-Agawany, F. I., & El-Adawy, A. (2020). Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceramics International, 46(17), 27616¬27626.
  • [3] Bektasoglu, M., & Mohammad, M. A. (2020). Investi-gation of radiation shielding properties of TeO2-ZnO- Nb2O5-Gd2O3 glasses at medical diagnostic ener¬gies. Ceramics International, 46(10), 16217-16223.
  • [4] Jawad, A. A., Demirkol, N., Gunoğlu, K., & Akkurt, I. (2019) . Radiation shielding properties of some ceramic wasted samples. International Journal of Environmen¬tal Science and Technology, 16(9), 5039-5042.
  • [5] Saddeek, Y B., Issa, S. A., Guclu, E. A., Kilicoglu, O., Susoy, G., & Tekin, H. O. (2020). Alkaline phosphate glasses and synergistic impact of germanium oxide (GeO2) additive: mechanical and nuclear radiation shielding behaviors. Ceramics International, 46(10), 16781-16797.
  • [6] Gaikwad, D. K., Sayyed, M. I., Botewad, S. N., Obaid,S. S., Khattari, Z. Y, Gawai, U. P, ... & Pawar, P P (2019) . Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses. Journal of Non-Crystalline Solids, 503, 158¬168.
  • [7] Aly, P., El-Kheshen, A. A., Abou-Gabal, H., & Agamy, S. (2020). Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation. Jour¬nal of Physics and Chemistry of Solids, 145, 109521.
  • [8] Vighnesh, K. R., Ramya, B., Nimitha, S., Wagh, A., Sayyed, M. I., Sakar, E., ... & Kamath, S. D. (2020). Structural, optical, thermal, mechanical, morphological & radiation shielding parameters of Pr3+ doped ZAlFB glass systems. Optical Materials, 99, 109512.
  • [9] Al-Hadeethi, Y, & Sayyed, M. I. (2019). Analysis of bo-rosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceramics International, 45(18), 24858-24864.
  • [10] Mirji, R., & Lobo, B. (2017). 24. Radiation shielding materials: A brief review on methods, scope and signif-icance. In National Conference on 'Advances in VLSI and Microelectronics.’In PC Jabin Science College, Huballi, India (pp. 96-100).
  • [11] Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8(2), 55-64.
  • [12] Demir, F., Budak, G., Sahin, R., Karabulut, A., Oltulu, M., Çerifoglu, K., & Un, A. (2010). Radiation transmis¬sion of heavyweight and normal-weight concretes con¬taining colemanite for 6 MV and 18 MV X-rays using linear accelerator. Annals of Nuclear Energy, 37(3), 339-344.
  • [13] Maslehuddin, M., Naqvi, A. A., Ibrahim, M., & Kalaka- da, Z. (2013). Radiation shielding properties of con-crete with electric arc furnace slag aggregates and steel shots. Annals of Nuclear Energy, 53, 192-196.
  • [14] Saidani, K., Ajam, L., & Ouezdou, M. B. (2015). Bar¬ite powder as sand substitution in concrete: Effect on some mechanical properties. Construction and Build-ing Materials, 95, 287-295.
  • [15] Kurtulus, R., & Kavas, T (2020). Investigation on the physical properties, shielding parameters, glass for-mation ability, and cost analysis for waste soda-lime- silica (SLS) glass containing SrO. Radiation Physics and Chemistry, 176, 109090.
  • [16] Shen, Z., Zhu, L., Zhang, Y., Chen, Y, Yang, D., & Song, X. (2017). Effect of CuO addition on crystalli-zation and thermal expansion properties of Li2O-ZnO- SiO2 glass-ceramics. Ceramics International, 43(9), 7099-7105.
  • [17] Goswami, M., Deshpande, S. K., Kumar, R., & Kothi- yal, G. P. (2010). Electrical behaviour of Li2O-ZnO- SiO2 glass and glass-ceramics system. Journal of Physics and Chemistry of Solids, 71(5), 739-744.
  • [18] Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y S. (2019). Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3-Bi2O3-ZnO- CaO glasses. Ceramics International, 45(16), 20724-20732.
  • [19]Singh, K., Singh, H., Sharma, G., Gerward, L., Khan- na, A., Kumar, R., ... & Sahota, H. S. (2005). Gamma- ray shielding properties of CaO-SrO-B2O3 glasses.Radiation Physics and Chemistry, 72(2-3), 225-228.
  • [20] Abouhaswa, A. S., & Kavaz, E. (2020). A novel B2O3- Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceramics Inter-national, 46(10), 16166-16177.
  • [21] Boron in the world. (2020). Etimaden. Retrieved De-cember 15, 2020 from https://www.etimaden.gov.tr/en/ boron-in-the-world.
  • [22] Reserves. (2018). TENMAK BOREN. Retrieved De-cember 15, 2020 from https://www.boren.gov.tr/Sayfa/ reserves/103.
  • [23] Yalcin, S., Aktas, B., & Yilmaz, D. (2019). Radiation shielding properties of Cerium oxide and erbium oxide doped obsidian glass. Radiation Physics and Chemis¬try, 160, 83-88.
  • [24] Sayyed, M. I., Lakshminarayana, G., Moghaddasi, M., Kityk, I. V., & Mahdi, M. A. (2018). Physical properties, optical band gaps and radiation shielding parameters exploration for Dy3+-doped alkali/mixed alkali multi-component borate glasses. Glass Physics and Chem-istry, 44(4), 279-291.
  • [25] Rashad, M., Ali, A. M., Sayyed, M. I., Somaily, H. H., Algarni, H., & Rammah, Y S. (2020). Radiation atten-uation and optical features of lithium borate glasses containing barium: B2O3 Li2O BaO. Ceramics Inter-national, 46(13), 21000-21007.
  • [26] Khodadadi, A., & Taherian, R. (2020). Investigation on the radiation shielding properties of lead silicate glass-es modified by ZnO and BaO. Materials Chemistry and Physics, 251, 123136.
  • [27] Çetin, B., Yalçin, Ç., & Albaçkara, M. (2017). Investi-gation of radiation shielding properties of soda-lime- silica glasses doped with different food materials. Acta Physica Polonica, A., 132(3), 988-990.
  • [28] Sayyed, M. I., Elmahroug, Y., Elbashir, B. O., & Issa, S. A. (2017). Gamma-ray shielding properties of zinc oxide soda lime silica glasses. Journal of Materials Science: Materials in Electronics, 28(5), 4064-4074.
  • [29] Inaba, S., & Fujino, S. (2010). Empirical equation for calculating the density of oxide glasses. Journal of the American Ceramic Society, 93(1), 217-220.
  • [30] Thombare, M., Joat, R., THombre, D., & Mahavidya- laya, V. B. (2016). Glasses study physical properties of sodiumborophosphate. International Journal of En-gineering Science, 8482.
  • [31] BatchMaker® Batch Calculation & Glass Development. (2020) . ilis GmbH. Retrieved December 15, 2020 from https://www.ilis.de/en/batchmaker.html.
  • [32] Lakatos, C. Johansson, L. G., & Simmingskold, B. (1972). Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the com-position range of technical glasses. Glass Technology- European Journal of Glass Science and Technology Part A, 13(3), 88-95.
  • [33] Fluegel, A. (2007). Glass viscosity calculation based on a global statistical modelling approach. Glass Tech- nology-European Journal of Glass Science and Tech-nology Part A, 48(1), 13-30.
  • [34] Al-Hadeethi, Y., & Sayyed, M. I. (2020). A compre-hensive study on the effect of TeO2 on the radiation shielding properties of TeO2-B2O3-Bi2O3-LiF-SrCl2 glass system using Phy-X/PSD software. Ceramics In-ternational, 46(5), 6136-6140.
  • [35] Al-Hadeethi, Y, Sayyed, M. I., Kaewkhao, J., Askin, A., Raffah, B. M., Mkawi, E. M., & Rajaramakrishna, R. (2019). Physical, structural, optical, and radiation shielding properties of B2O3-Gd2O3-Y2O3 glass sys-tem. Applied Physics A, 125(12), 1-7.
  • [36] Wahab, E. A., Shaaban, K. S., & Elsaman, R. (2019). Radiation shielding and physical properties of lead bo-rate glass-doped ZrO2 nanoparticles. Applied Physics A, 125(12), 1-15.
  • [37] Susoy, G. (2020). Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O-B2O3-P2O5- TeO2 glass-system. Ceramics International, 46(3), 3844-3854.
  • [38] Kumar, A. (2017). Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiation Physics and Chemistry, 136, 50-53.
  • [39] Lakshminarayana, G., Elmahroug, Y, Kumar, A., Dong, M. G., Lee, D. E., Yoon, J., & Park, T (2020). TeO2-B2O3-ZnO-La2O3 glasses: Y-ray and neutron attenuation characteristics analysis by WinXCOM program, MCNP5, Geant4, and Penelope simulation codes. Ceramics International, 46(10), 16620-16635.
  • [40] Al-Hadeethi, Y, Sayyed, M. I., Mohammed, H., & Ri- mondini, L. (2020). X-ray photons attenuation charac-teristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257.
  • [41] Radiation Shielding Glasses for Industrial Applications. (2020) . Schott AG. Retrieved December 15, 2020 from https://www.schott.com/advanced_optics/english/ products/optical-materials/specialmaterials/radiation- shielding-glasses/index.html.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Recep Kurtuluş 0000-0002-3206-9278

Taner Kavas 0000-0003-1070-8451

Yayımlanma Tarihi 31 Mart 2021
Kabul Tarihi 28 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kurtuluş, R., & Kavas, T. (2021). The role of B2O3 in lithium-zinc-calcium-silicate glass for improving the radiation shielding competencies: A theoretical evaluation via Phy-X/PSD. Journal of Boron, 6(1), 236-242. https://doi.org/10.30728/boron.841726