Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound supported flocculation of borate tailings with differently charged flocculants

Yıl 2021, , 348 - 358, 30.09.2021
https://doi.org/10.30728/boron.971892

Öz

Mining activities are followed by mineral processing and wet beneficiation methods which generate a significant amount of tailings. Slime fractions are discharged to the tailing ponds with associated process water and this causes storage and disposal difficulties and creates severe environmental problems. Therefore, dewatering these tailings is necessary for both economic and environmental aspects. In this study, the flocculation behaviors of the boron tailings from Agildere and Hisarcik (Turkey) were studied in the presence of anionic, cationic, and non-ionic flocculants. The results showed that the free settling condition was optimum for the Agildere sample. On the contrary, the settling rate of the Hisarcik sample increased considerably by the use of flocculants with a significant decrease in the turbidity of the suspension. Flocculation experiments indicated that the effect of the flocculant type on the flocculation of the Hisarcik sample can be generally ordered as anionic>cationic>non-ionic>no-flocculant. Furthermore, ultrasound was used as a supporting application. The results indicated that although the ultrasound application decreased the settling rate of both samples, lower sediment bed heights were obtained for the Hisarcik sample with ultrasound because of the formation of a more compact sediment bed in the presence of ultrasound.

Destekleyen Kurum

Research Fund of Istanbul University

Proje Numarası

FBA-2017-25533

Teşekkür

This paper was supported by the Research Fund of Istanbul University, project number: FBA-2017-25533.

Kaynakça

  • Abu Hassan, M. A., Hui, L. S., & Noor, Z. Z. (2009). Removal of boron from industrial wastewater by chitosan via chemical precipitation. Journal of Chemical and Natural Resources Engineering, 4(1), 1-11.
  • Acarkan, N., Kokkilic, O., Basturkcu, H., & Sirkeci, A. A. (2018). Precipitation of boron from waste water of Kirka borax plant. RSD, 11(1), 21-26. https://doi.org/10.5937/ror1801021A
  • Addai-Mensah, J., Yeap, K. Y., & McFarlane, A. J. (2007). The influential role of pulp chemistry, flocculant structure type and shear rate on dewaterability of kaolinite and smectite clay dispersions under couette Taylor flow conditions. Powder Technology, 179(1-2), 79-83. https://doi.org/10.1016/j.powtec.2006.11.007
  • Aldrich, C., & Feng, D. (1999). Technical Note - Effect of Ultrasonic Preconditioning of Pulp on the Flotation of Sulphide Ores. Miner. Eng., 12, 701-707. https://doi.org/10.1016/S0892-6875(99)00053-9
  • Ambedkar, B., Chintala, T. N., Nagarajan, R., & Jayanti, S. (2011). Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal. Chem. Eng. Process., 50(3), 236-246. https://doi.org/10.1016/j.cep.2011.02.008
  • Ambedkar, B., Nagarajan, R., & Jayanti, S. (2011, May). Ultrasonic coal-wash for de-sulfurization. Ultrason. Sonochem., 18(3), 718-726. https://doi.org/10.1016/j.ultsonch.2010.09.006
  • Arslan, V., & Bayat, O. (2016). Production of Boric Acid From Colemanite Ore by Oxalic Acid Leaching (in Turkish). Journal of Underground Resources, 10, 11-20.
  • Arulmathi, P., Jeyaprabha, C., Sivasankar, P., & Rajkumar, V. (2019). Treatment of Textile Wastewater by Coagulation–Flocculation Process Using Gossypium herbaceum and Polyaniline Coagulants. CLEAN – Soil, Air, Water, 47(7), 1800464. https://doi.org/10.1002/clen.201800464
  • Birdi, K. S. (2015). Handbook of surface and colloid chemistry. CRC press.
  • Burat, F., Sirkeci, A. A., & Onal, G. (2014). Improved Fine Coal Dewatering by Ultrasonic Pretreatment and Dewatering Aids. Min. Proc. Ext. Met. Rev., 36(2), 129-135. https://doi.org/10.1080/08827508.2014.898637
  • Castillo, C., Ihle, C. F., & Jeldres, R. I. (2019). Chemometric Optimisation of a Copper Sulphide Tailings Flocculation Process in the Presence of Clays. Minerals, 9(10). https://doi.org/10.3390/min9100582
  • Celik, M. S., Batar, T., Akin, Y., & Arslan, F. (1998). Upgrading schemes for boron minerals through calcination. Mining, Metallurgy & Exploration, 15(1), 53-56. https://doi.org/10.1007/BF03402788
  • Chong, M. F., Lee, K. P., Chieng, H. J., & Syazwani Binti, R., II. (2009, Jul). Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Res, 43(13), 3326-3334. https://doi.org/10.1016/j.watres.2009.04.044
  • Cirak, M. (2010). Flocculation behavior of two different clay samples from Kirka tincal deposit Middle East Technical University]. Ankara.
  • Cirak, M., & Hosten, C. (2015). Characterization of clay rock samples of a borax ore in relation to their problematical flocculation behavior. Powder Technol., 284, 452-458. https://doi.org/10.1016/j.powtec.2015.07.020
  • Cirak, M., & Hosten, C. (2017). Optimization of coagulation-flocculation process for treatment of a colloidal suspension containing dolomite/clay/borax. Int. J. Miner. Process., 159, 30-41. https://doi.org/10.1016/j.minpro.2016.12.007
  • Ding, C., Xie, A., Yan, Z., Li, X., Zhang, H., Tang, N., & Wang, X. (2021). Treatment of water-based ink wastewater by a novel magnetic flocculant of boron-containing polysilicic acid ferric and zinc sulfate. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101899
  • Du, J., McLoughlin, R., & Smart, R. S. C. (2014). Improving thickener bed density by ultrasonic treatment. INT J MINER PROCESS, 133, 91-96. https://doi.org/10.1016/j.minpro.2014.10.003
  • Ersoy, B., Tosun, I., Gunay, A., & Dikmen, S. (2009). Turbidity Removal from Wastewaters of Natural Stone Processing by Coagulation/Flocculation Methods. CLEAN - Soil Air Water, 37(3), 225-232. https://doi.org/10.1002/clen.200800209
  • Eskibalci, M. F., & Ozkan, S. G. (2012). An investigation of effect of microwave energy on electrostatic separation of colemanite and ulexite. Minerals Engineering, 31, 90-97. https://doi.org/10.1016/j.mineng.2012.01.018
  • Garip, S. (2015). Characterization Studies for Recycling of Boron Wastes (in Turkish) [Undergraduate Thesis, Istanbul University]. Istanbul, Turkey.
  • Gungoren, C., Ozdemir, O., Wang, X., Ozkan, S. G., & Miller, J. D. (2019, Apr). Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrason Sonochem, 52, 446-454. https://doi.org/10.1016/j.ultsonch.2018.12.023
  • Karapinar, N. (2019). Flocculation Behavior of Borax Clayey Tailings in Mono- and Dual- Flocculant Systems: Effect of Tailings Slurry Characteristics and polyDADMAC Type. Global Journal of Earth Science and Engineering, 6(1), 9-15. https://doi.org/10.15377/2409-5710.2019.06.2
  • Kowalski, W., & Kowalska, E. (1978). The ultrasonic activation of non-polar collectors in the flotation of hydrophobic minerals. Ultrasonics, March, 84-86. https://doi.org/10.1016/0041-624X(78)90095-1
  • Kursun, I., Ipekoglu, B., Celik, M. A., & Kaytaz, Y. (2000). Flocculation and Adsorption-Desorption Mechanism of Polymers on Albite. XXI International Mineral Processing Congress, Rome, Italy.
  • Mason, T. J., Collings, A., & Sumel, A. (2004, May). Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason. Sonochem., 11(3-4), 205-210. https://doi.org/10.1016/j.ultsonch.2004.01.025
  • Onal, G., Ozer, M., & Arslan, F. (2003). Sedimentation of clay in ultrasonic medium. Miner. Eng., 16(2), 129-134. https://doi.org/10.1016/s0892-6875(02)00309-6
  • Ozdemir, O., & Celik, M. S. (2010). Surface Properties and Flotation Characteristics of Boron Minerals. TOMPJ, 3, 2-13. https://doi.org/10.2174/1874841401003010002
  • Ozkan, S. G. (2018). A review of simultaneous ultrasound-assisted coal flotation. Journal of Mining and Environment. https://doi.org/10.22044/jme.2018.6784.1502
  • Ozkan, S. G., & Acar, A. (2004, Apr). Investigation of impact of water type on borate ore flotation. Water Res, 38(7), 1773-1778. https://doi.org/10.1016/j.watres.2003.12.036
  • Ozkan, S. G., & Gungoren, C. (2012). Enhancement of Colemanite Flotation by Ultrasonic Pre-treatment. Physicochemical Problems of Mi., 48(2), 455-462. https://doi.org/10.5277/ppmp120211
  • Riera-Franco de Sarabia, E., Gallego-Juarez, J. A., Rodriguez-Corral, G., Elvira-Segura, L., & Gonzalez-Gomez, I. (2000). Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics, 38, 642-646. https://doi.org/10.1016/S0041-624X(99)00129-8
  • Sabah, E., & Yesilkaya, L. (2000). Evaluation of the Settling Behaviour of Kirka Borax Concentrator Tailings Using Different Type of Polymers. Ore Dressing(3), 1-12.
  • Savas, M. (2016). Recovery of colemanite from tailing using a Knelson concentrator. Physicochem. Probl. Mi., 52(2), 1036-1047. https://doi.org/10.5277/ppmp160240
  • Simsek, B., Tas, E., & Sabah, E. (2019). Modeling and optimization of the flocculation process of polydisperse travertine suspension employing an eco-friendly hybrid flocculant. Arab. J. Geosci., 12(24). https://doi.org/10.1007/s12517-019-4967-y
  • Singh, B. P. (1999). Technical Note-Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles. Miner. Eng., 12(4). https://doi.org/10.1016/S0892-6875(99)00024-2
  • Smythe, M. C., & Wakeman, R. J. (2000). The use of acoustic fields as a filtration and dewatering aid. Ultrasonics, 38, 657–661. https://doi.org/10.1016/S0041-624X(99)00147-X
  • Suslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T., Kolbeck, K. J., McNamara III, W. B., Mdleleni, M. M., & Wong, M. (1999). Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London, Series A 357, 335-353. https://doi.org/10.1098/rsta.1999.0330
  • Ucbeyiay, H., & Ozkan, A. (2014). Two-stage shear flocculation for enrichment of fine boron ore containing colemanite. Sep. Purif. Technol., 132, 302-308. https://doi.org/10.1016/j.seppur.2014.05.031
  • Videla, A., Faúndez, D., Meneses, J., Gaete, L., & Vargas, Y. (2020). Enhancement of the sedimentation rate of copper tailings by application of acoustic fields. Minerals Engineering, 146. https://doi.org/10.1016/j.mineng.2019.106096
  • Weber Jr., W. J. (1972). Physicochemical processes for water quality control. John Wiley and Sons.
  • Winterwerp, J. C. (2002). On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, 22, 1339–1360. https://doi.org/10.1016/S0278-4343(02)00010-9
  • Yang, Y., Wu, A., Klein, B., & Wang, H. (2019). Effect of primary flocculant type on a two-step flocculation process on iron ore fine tailings under alkaline environment. Miner. Eng., 132, 14-21. https://doi.org/10.1016/j.mineng.2018.11.053
  • Ye, L., Manning, A. J., & Hsu, T. J. (2020, Feb 3). Oil-mineral flocculation and settling velocity in saline water. Water Res, 173, 115569. https://doi.org/10.1016/j.watres.2020.115569
  • Yucel, M. (2018). Settlement of Boron Tailings (in Turkish) [B.Sc., Istanbul University]. Istanbul, Turkey.
  • Zarei Mahmudabadi, T., Ebrahimi, A. A., Ehrampoush, M. H., & Eslami, H. (2021). Investigating the Effect of Coagulation and Flocculation - Adsorption Process on Boron Removal from Industrial Wastewater (Case Study: Ceramic Tile Industry). Journal of Rafsanjan University of Medical Sciences, 19(10), 1015-1034. https://doi.org/10.29252/jrums.19.10.1015
  • Zhao, Y., Meng, L., & Shen, X. (2020, Jan 18). Study on ultrasonic-electrochemical treatment for difficult-to-settle slime water. Ultrason Sonochem, 64, 104978. https://doi.org/10.1016/j.ultsonch.2020.104978
  • Zhu, L., Lyu, W., Yang, P., & Wang, Z. (2020). Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason. Sonochem., 104984. https://doi.org/10.1016/j.ultsonch.2020.104984

Bor atıklarının farklı yüklü flokülantlarla ultrason destekli flokülasyonu

Yıl 2021, , 348 - 358, 30.09.2021
https://doi.org/10.30728/boron.971892

Öz

Madencilik faaliyetlerini, önemli miktarda atık oluşturan maden işleme ve yaş zenginleştirme yöntemleri izlemektedir. Şlam fraksiyonları, proses suyu ile birlikte atık havuzlarına boşaltılır ve bu depolama ve bertaraf zorluklarına neden olur ve ciddi çevre sorunları yaratır. Bu nedenle, bu atıkların susuzlaştırılması hem ekonomik hem de çevresel açılardan gereklidir. Bu çalışmada, Ağıldere ve Hisarcık (Türkiye) bor atıklarının anyonik, katyonik ve iyonik olmayan flokülantlar varlığında flokülasyon davranışları incelenmiştir. Sonuçlar, Ağıldere numunesi için serbest çökme koşulunun optimum olduğunu göstermiştir. Diğer taraftan Hisarcık numunesinin çökelme hızı, flokülant kullanımı ile süspansiyon bulanıklığında önemli bir azalma da göstererek önemli ölçüde artmıştır. Flokülasyon deneyleri, flokülant tipinin Hisarcık numunesinin flokülasyonuna etkisinin genel olarak anyonik>katyonik>iyonik olmayan>flokülantsız olarak sıralanabileceğini göstermiştir. Çalışmada ayrıca ultrason destekleyici bir uygulama olarak kullanılmıştır. Sonuçlar, ultrason uygulamasının her iki numunenin de çökme hızını azaltmasına rağmen, ultrason varlığında daha kompakt bir çökelti yatağı oluşması nedeniyle Hisarcık numunesinde ultrason varlığında daha düşük çökelti yatağı yükseklikleri elde edildiğini göstermiştir.

Proje Numarası

FBA-2017-25533

Kaynakça

  • Abu Hassan, M. A., Hui, L. S., & Noor, Z. Z. (2009). Removal of boron from industrial wastewater by chitosan via chemical precipitation. Journal of Chemical and Natural Resources Engineering, 4(1), 1-11.
  • Acarkan, N., Kokkilic, O., Basturkcu, H., & Sirkeci, A. A. (2018). Precipitation of boron from waste water of Kirka borax plant. RSD, 11(1), 21-26. https://doi.org/10.5937/ror1801021A
  • Addai-Mensah, J., Yeap, K. Y., & McFarlane, A. J. (2007). The influential role of pulp chemistry, flocculant structure type and shear rate on dewaterability of kaolinite and smectite clay dispersions under couette Taylor flow conditions. Powder Technology, 179(1-2), 79-83. https://doi.org/10.1016/j.powtec.2006.11.007
  • Aldrich, C., & Feng, D. (1999). Technical Note - Effect of Ultrasonic Preconditioning of Pulp on the Flotation of Sulphide Ores. Miner. Eng., 12, 701-707. https://doi.org/10.1016/S0892-6875(99)00053-9
  • Ambedkar, B., Chintala, T. N., Nagarajan, R., & Jayanti, S. (2011). Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal. Chem. Eng. Process., 50(3), 236-246. https://doi.org/10.1016/j.cep.2011.02.008
  • Ambedkar, B., Nagarajan, R., & Jayanti, S. (2011, May). Ultrasonic coal-wash for de-sulfurization. Ultrason. Sonochem., 18(3), 718-726. https://doi.org/10.1016/j.ultsonch.2010.09.006
  • Arslan, V., & Bayat, O. (2016). Production of Boric Acid From Colemanite Ore by Oxalic Acid Leaching (in Turkish). Journal of Underground Resources, 10, 11-20.
  • Arulmathi, P., Jeyaprabha, C., Sivasankar, P., & Rajkumar, V. (2019). Treatment of Textile Wastewater by Coagulation–Flocculation Process Using Gossypium herbaceum and Polyaniline Coagulants. CLEAN – Soil, Air, Water, 47(7), 1800464. https://doi.org/10.1002/clen.201800464
  • Birdi, K. S. (2015). Handbook of surface and colloid chemistry. CRC press.
  • Burat, F., Sirkeci, A. A., & Onal, G. (2014). Improved Fine Coal Dewatering by Ultrasonic Pretreatment and Dewatering Aids. Min. Proc. Ext. Met. Rev., 36(2), 129-135. https://doi.org/10.1080/08827508.2014.898637
  • Castillo, C., Ihle, C. F., & Jeldres, R. I. (2019). Chemometric Optimisation of a Copper Sulphide Tailings Flocculation Process in the Presence of Clays. Minerals, 9(10). https://doi.org/10.3390/min9100582
  • Celik, M. S., Batar, T., Akin, Y., & Arslan, F. (1998). Upgrading schemes for boron minerals through calcination. Mining, Metallurgy & Exploration, 15(1), 53-56. https://doi.org/10.1007/BF03402788
  • Chong, M. F., Lee, K. P., Chieng, H. J., & Syazwani Binti, R., II. (2009, Jul). Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Res, 43(13), 3326-3334. https://doi.org/10.1016/j.watres.2009.04.044
  • Cirak, M. (2010). Flocculation behavior of two different clay samples from Kirka tincal deposit Middle East Technical University]. Ankara.
  • Cirak, M., & Hosten, C. (2015). Characterization of clay rock samples of a borax ore in relation to their problematical flocculation behavior. Powder Technol., 284, 452-458. https://doi.org/10.1016/j.powtec.2015.07.020
  • Cirak, M., & Hosten, C. (2017). Optimization of coagulation-flocculation process for treatment of a colloidal suspension containing dolomite/clay/borax. Int. J. Miner. Process., 159, 30-41. https://doi.org/10.1016/j.minpro.2016.12.007
  • Ding, C., Xie, A., Yan, Z., Li, X., Zhang, H., Tang, N., & Wang, X. (2021). Treatment of water-based ink wastewater by a novel magnetic flocculant of boron-containing polysilicic acid ferric and zinc sulfate. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101899
  • Du, J., McLoughlin, R., & Smart, R. S. C. (2014). Improving thickener bed density by ultrasonic treatment. INT J MINER PROCESS, 133, 91-96. https://doi.org/10.1016/j.minpro.2014.10.003
  • Ersoy, B., Tosun, I., Gunay, A., & Dikmen, S. (2009). Turbidity Removal from Wastewaters of Natural Stone Processing by Coagulation/Flocculation Methods. CLEAN - Soil Air Water, 37(3), 225-232. https://doi.org/10.1002/clen.200800209
  • Eskibalci, M. F., & Ozkan, S. G. (2012). An investigation of effect of microwave energy on electrostatic separation of colemanite and ulexite. Minerals Engineering, 31, 90-97. https://doi.org/10.1016/j.mineng.2012.01.018
  • Garip, S. (2015). Characterization Studies for Recycling of Boron Wastes (in Turkish) [Undergraduate Thesis, Istanbul University]. Istanbul, Turkey.
  • Gungoren, C., Ozdemir, O., Wang, X., Ozkan, S. G., & Miller, J. D. (2019, Apr). Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrason Sonochem, 52, 446-454. https://doi.org/10.1016/j.ultsonch.2018.12.023
  • Karapinar, N. (2019). Flocculation Behavior of Borax Clayey Tailings in Mono- and Dual- Flocculant Systems: Effect of Tailings Slurry Characteristics and polyDADMAC Type. Global Journal of Earth Science and Engineering, 6(1), 9-15. https://doi.org/10.15377/2409-5710.2019.06.2
  • Kowalski, W., & Kowalska, E. (1978). The ultrasonic activation of non-polar collectors in the flotation of hydrophobic minerals. Ultrasonics, March, 84-86. https://doi.org/10.1016/0041-624X(78)90095-1
  • Kursun, I., Ipekoglu, B., Celik, M. A., & Kaytaz, Y. (2000). Flocculation and Adsorption-Desorption Mechanism of Polymers on Albite. XXI International Mineral Processing Congress, Rome, Italy.
  • Mason, T. J., Collings, A., & Sumel, A. (2004, May). Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason. Sonochem., 11(3-4), 205-210. https://doi.org/10.1016/j.ultsonch.2004.01.025
  • Onal, G., Ozer, M., & Arslan, F. (2003). Sedimentation of clay in ultrasonic medium. Miner. Eng., 16(2), 129-134. https://doi.org/10.1016/s0892-6875(02)00309-6
  • Ozdemir, O., & Celik, M. S. (2010). Surface Properties and Flotation Characteristics of Boron Minerals. TOMPJ, 3, 2-13. https://doi.org/10.2174/1874841401003010002
  • Ozkan, S. G. (2018). A review of simultaneous ultrasound-assisted coal flotation. Journal of Mining and Environment. https://doi.org/10.22044/jme.2018.6784.1502
  • Ozkan, S. G., & Acar, A. (2004, Apr). Investigation of impact of water type on borate ore flotation. Water Res, 38(7), 1773-1778. https://doi.org/10.1016/j.watres.2003.12.036
  • Ozkan, S. G., & Gungoren, C. (2012). Enhancement of Colemanite Flotation by Ultrasonic Pre-treatment. Physicochemical Problems of Mi., 48(2), 455-462. https://doi.org/10.5277/ppmp120211
  • Riera-Franco de Sarabia, E., Gallego-Juarez, J. A., Rodriguez-Corral, G., Elvira-Segura, L., & Gonzalez-Gomez, I. (2000). Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics, 38, 642-646. https://doi.org/10.1016/S0041-624X(99)00129-8
  • Sabah, E., & Yesilkaya, L. (2000). Evaluation of the Settling Behaviour of Kirka Borax Concentrator Tailings Using Different Type of Polymers. Ore Dressing(3), 1-12.
  • Savas, M. (2016). Recovery of colemanite from tailing using a Knelson concentrator. Physicochem. Probl. Mi., 52(2), 1036-1047. https://doi.org/10.5277/ppmp160240
  • Simsek, B., Tas, E., & Sabah, E. (2019). Modeling and optimization of the flocculation process of polydisperse travertine suspension employing an eco-friendly hybrid flocculant. Arab. J. Geosci., 12(24). https://doi.org/10.1007/s12517-019-4967-y
  • Singh, B. P. (1999). Technical Note-Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles. Miner. Eng., 12(4). https://doi.org/10.1016/S0892-6875(99)00024-2
  • Smythe, M. C., & Wakeman, R. J. (2000). The use of acoustic fields as a filtration and dewatering aid. Ultrasonics, 38, 657–661. https://doi.org/10.1016/S0041-624X(99)00147-X
  • Suslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T., Kolbeck, K. J., McNamara III, W. B., Mdleleni, M. M., & Wong, M. (1999). Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London, Series A 357, 335-353. https://doi.org/10.1098/rsta.1999.0330
  • Ucbeyiay, H., & Ozkan, A. (2014). Two-stage shear flocculation for enrichment of fine boron ore containing colemanite. Sep. Purif. Technol., 132, 302-308. https://doi.org/10.1016/j.seppur.2014.05.031
  • Videla, A., Faúndez, D., Meneses, J., Gaete, L., & Vargas, Y. (2020). Enhancement of the sedimentation rate of copper tailings by application of acoustic fields. Minerals Engineering, 146. https://doi.org/10.1016/j.mineng.2019.106096
  • Weber Jr., W. J. (1972). Physicochemical processes for water quality control. John Wiley and Sons.
  • Winterwerp, J. C. (2002). On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, 22, 1339–1360. https://doi.org/10.1016/S0278-4343(02)00010-9
  • Yang, Y., Wu, A., Klein, B., & Wang, H. (2019). Effect of primary flocculant type on a two-step flocculation process on iron ore fine tailings under alkaline environment. Miner. Eng., 132, 14-21. https://doi.org/10.1016/j.mineng.2018.11.053
  • Ye, L., Manning, A. J., & Hsu, T. J. (2020, Feb 3). Oil-mineral flocculation and settling velocity in saline water. Water Res, 173, 115569. https://doi.org/10.1016/j.watres.2020.115569
  • Yucel, M. (2018). Settlement of Boron Tailings (in Turkish) [B.Sc., Istanbul University]. Istanbul, Turkey.
  • Zarei Mahmudabadi, T., Ebrahimi, A. A., Ehrampoush, M. H., & Eslami, H. (2021). Investigating the Effect of Coagulation and Flocculation - Adsorption Process on Boron Removal from Industrial Wastewater (Case Study: Ceramic Tile Industry). Journal of Rafsanjan University of Medical Sciences, 19(10), 1015-1034. https://doi.org/10.29252/jrums.19.10.1015
  • Zhao, Y., Meng, L., & Shen, X. (2020, Jan 18). Study on ultrasonic-electrochemical treatment for difficult-to-settle slime water. Ultrason Sonochem, 64, 104978. https://doi.org/10.1016/j.ultsonch.2020.104978
  • Zhu, L., Lyu, W., Yang, P., & Wang, Z. (2020). Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings. Ultrason. Sonochem., 104984. https://doi.org/10.1016/j.ultsonch.2020.104984
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

İsmail Demir Bu kişi benim 0000-0003-0949-7706

Can Güngören 0000-0002-6664-1551

Yasin Baktarhan Bu kişi benim 0000-0001-7547-0785

Melike Yücel Bu kişi benim 0000-0003-1731-4041

İlgin Kurşun Bu kişi benim 0000-0001-7348-6054

Kenan Çinku Bu kişi benim 0000-0001-7523-8126

Şafak Gökhan Özkan 0000-0002-7770-7480

Proje Numarası FBA-2017-25533
Yayımlanma Tarihi 30 Eylül 2021
Kabul Tarihi 22 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Demir, İ., Güngören, C., Baktarhan, Y., Yücel, M., vd. (2021). Ultrasound supported flocculation of borate tailings with differently charged flocculants. Journal of Boron, 6(3), 348-358. https://doi.org/10.30728/boron.971892