Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of radiation attenuation properties of Al-Cu matrix composites reinforced by different amount of B4C particles

Yıl 2020, Cilt: 5 Sayı: 3, 124 - 130, 30.09.2020
https://doi.org/10.30728/boron.730354

Öz

In recent years, B4C particle reinforced Al matrix composite materials have been excessively used for gamma and neutron shielding regarding their neutron absorption and lightweight. In this paper, linear and mass attenuation coefficients using 80 keV, 356 keV, 137Cs (662 keV), 60Co (1173 keV,1332 keV) and 2000 keV(high energy) gamma energies for B4C (5-15 wt%) particle-reinforced Alumix 13 and Alumix 231 (which contains special alloy elements such as Cu and Mg) aluminum matrix composites were theoretically calculated with XCOM platform. Pair production, coherent scattering, photoelectric absorption and incoherent scattering processes besides the total attenuation coefficients for B4C (5-15 wt%) particle-reinforced Alumix 13 and Alumix 231 matrix composite materials were evaluated separately. On the other hand, half-value thickness (HVL) values and one-tenth thickness values (TVL) were also calculated to evaluate the radiation shielding effectiveness of this material excluding coherent scattering values that are frequently used in gamma ray transport theory as well as the total attenuation coefficients. Gamma attenuation curves for Al composite materials against 80 keV, 356 keV, 137Cs (662 keV), 60Co (1173 keV, 1332 keV) and 2000 keV (high energy) gamma energies were theoretically calculated and plotted for B4C (5-15 wt%) particle-reinforced Alumix 13 and Alumix 231 matrix composite materials. According to the obtained results for this material, radiation attenuation properties and the ability of shielding of materials were investigated. Therefore, this study is original from a variety of aspects, and its results may be used not only in nuclear technology but also in other technologies such as nano and space technology.

Kaynakça

  • Jalali M, Mohammadi A., Gamma ray attenuation coefficient measurement for neutron-absorbent materials, Radiat. Phys. Chem., 77, 523-527, 2008.
  • Chen S., Bourham, M., Rabiei, A., Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams, Radiat. Phys. Chem., 117, 12-22, 2015.
  • Atta E. R., Zakaria K. M., Madbouly A. M., Study on polymer clay layered nano composites as shielding materials for ionizing radiation, Int. J. Recent Sci. Res., 6, 4263-4264, 2015.
  • Junior T. A. A., Nogueira M. S., Vivolo V., Potiens M. P. A., Campos L. L., Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation, Radiat. Phys. Chem., 140, 349-354, 2017.
  • Chen S., Bourham M., Rabiei A., Novel light-weight materials for shielding gamma ray, Radiat. Phys. Chem., 96, 27-37, 2014.
  • Kaur T., Sharma J., Singh, T., Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy, 113, 95-113, 2019.
  • Li R., Gu Y., Wang Y., Yang Z., Li M., Zhang Z., Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix Composite, Mater. Res. Express, 4, 034001-039501, 2017.
  • Akkurt I., Akyildirim H., Mavi B., Kilincarslan S., Basyigit C., Radiation shielding of concrete containing zeolite, J. Radiat. Meas., 45, 827-830, 2010.
  • Fan G. H., Geng L., Wang, G. S., Zheng, Z. Z., A novel radiation protection material: BaPbO3/Al composite, J. Mater., 30, 862-866, 2009.
  • Erdem M., Cinici H., Gokmen U., Karakoc H., Turker M., Mechanical and ballistic properties of powder metal 7039 aluminium alloy joined by friction stir welding, Trans. Nonferrous Met. Soc. China, 26 (1), 74-84, 2016.
  • Uzun A., Karakoc H., Gokmen U., Cinici H., Turker M., Investigation of mechanical properties of tubular aluminum foams, Int. J. Mater. Res., 107 (11), 996-1004, 2016.
  • Levet A., Kavaz E., Özdemir Y., An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd., 819, 152946, 2020.
  • Uzun A., Asikuzun E., Gokmen U., Cinici H., Vickers microhardness studies on B4C reinforced/unreinforced foamable aluminium composites, Trans. Indian Inst. Met., 71 (2), 327-337, 2018.
  • Chen H. S., Wang W. X., Nie H. H., Zhou J., Li Y. L., Liu R. F., Zhang P., Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy, J. Alloys Compd., 730, 342-351, 2018.
  • Gökmen U., Fabrication and characterization of hot extruded hybrid composites Al 2024 matrix reinforced with B4C/Al2O3, Journal of Polytechnic, 19 (4), 445-453, 2016.
  • Zhang P., Li Y., Wang W., Gao Z., Wang B., The design, fabrication and properties of B4C/Al neutron absorbers, J. Nucl. Mater., 437 (1-3), 350-358, 2013.
  • El-Sayed A., Ali M. A. M., Ismail M. R., Natural fibre high-density poly- ethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem., 66, 185-195, 2003.
  • Gerward L., Guilbert N., Jensen, K. B., Levring H., X-ray absorption in matter, Reengineering XCOM, Radiat. Phys. Chem. 60, 23-24, 2001.
  • Gerward L., Guilbert N., Jensen, K. B., Levring H., Win XCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653-654, 2004.
  • Evans B. R., Lian J., and Ji W., Evaluation of shielding performance for newly developed composite materials, Ann. Nucl. Energy, 116, 1-9, 2018.
  • Manohara S. R., Hanagodimath S. M., Thind K. S., Gerward L., On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3906-3912, 2008.
Yıl 2020, Cilt: 5 Sayı: 3, 124 - 130, 30.09.2020
https://doi.org/10.30728/boron.730354

Öz

Kaynakça

  • Jalali M, Mohammadi A., Gamma ray attenuation coefficient measurement for neutron-absorbent materials, Radiat. Phys. Chem., 77, 523-527, 2008.
  • Chen S., Bourham, M., Rabiei, A., Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams, Radiat. Phys. Chem., 117, 12-22, 2015.
  • Atta E. R., Zakaria K. M., Madbouly A. M., Study on polymer clay layered nano composites as shielding materials for ionizing radiation, Int. J. Recent Sci. Res., 6, 4263-4264, 2015.
  • Junior T. A. A., Nogueira M. S., Vivolo V., Potiens M. P. A., Campos L. L., Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation, Radiat. Phys. Chem., 140, 349-354, 2017.
  • Chen S., Bourham M., Rabiei A., Novel light-weight materials for shielding gamma ray, Radiat. Phys. Chem., 96, 27-37, 2014.
  • Kaur T., Sharma J., Singh, T., Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy, 113, 95-113, 2019.
  • Li R., Gu Y., Wang Y., Yang Z., Li M., Zhang Z., Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix Composite, Mater. Res. Express, 4, 034001-039501, 2017.
  • Akkurt I., Akyildirim H., Mavi B., Kilincarslan S., Basyigit C., Radiation shielding of concrete containing zeolite, J. Radiat. Meas., 45, 827-830, 2010.
  • Fan G. H., Geng L., Wang, G. S., Zheng, Z. Z., A novel radiation protection material: BaPbO3/Al composite, J. Mater., 30, 862-866, 2009.
  • Erdem M., Cinici H., Gokmen U., Karakoc H., Turker M., Mechanical and ballistic properties of powder metal 7039 aluminium alloy joined by friction stir welding, Trans. Nonferrous Met. Soc. China, 26 (1), 74-84, 2016.
  • Uzun A., Karakoc H., Gokmen U., Cinici H., Turker M., Investigation of mechanical properties of tubular aluminum foams, Int. J. Mater. Res., 107 (11), 996-1004, 2016.
  • Levet A., Kavaz E., Özdemir Y., An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd., 819, 152946, 2020.
  • Uzun A., Asikuzun E., Gokmen U., Cinici H., Vickers microhardness studies on B4C reinforced/unreinforced foamable aluminium composites, Trans. Indian Inst. Met., 71 (2), 327-337, 2018.
  • Chen H. S., Wang W. X., Nie H. H., Zhou J., Li Y. L., Liu R. F., Zhang P., Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy, J. Alloys Compd., 730, 342-351, 2018.
  • Gökmen U., Fabrication and characterization of hot extruded hybrid composites Al 2024 matrix reinforced with B4C/Al2O3, Journal of Polytechnic, 19 (4), 445-453, 2016.
  • Zhang P., Li Y., Wang W., Gao Z., Wang B., The design, fabrication and properties of B4C/Al neutron absorbers, J. Nucl. Mater., 437 (1-3), 350-358, 2013.
  • El-Sayed A., Ali M. A. M., Ismail M. R., Natural fibre high-density poly- ethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem., 66, 185-195, 2003.
  • Gerward L., Guilbert N., Jensen, K. B., Levring H., X-ray absorption in matter, Reengineering XCOM, Radiat. Phys. Chem. 60, 23-24, 2001.
  • Gerward L., Guilbert N., Jensen, K. B., Levring H., Win XCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653-654, 2004.
  • Evans B. R., Lian J., and Ji W., Evaluation of shielding performance for newly developed composite materials, Ann. Nucl. Energy, 116, 1-9, 2018.
  • Manohara S. R., Hanagodimath S. M., Thind K. S., Gerward L., On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3906-3912, 2008.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Uğur Gökmen

Zübeyde Özkan Bu kişi benim

Leili Eslam Jamalgolzari Bu kişi benim 0000-0001-9740-3604

Sema Bilge Ocak

Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 29 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

APA Gökmen, U., Özkan, Z., Jamalgolzari, L. E., Bilge Ocak, S. (2020). Investigation of radiation attenuation properties of Al-Cu matrix composites reinforced by different amount of B4C particles. Journal of Boron, 5(3), 124-130. https://doi.org/10.30728/boron.730354