Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancing the mechanical features of poly(vinyl) alcohol nanofibers with the addition of boron nitride

Yıl 2020, Cilt: 5 Sayı: 4, 192 - 198, 29.12.2020
https://doi.org/10.30728/boron.696373

Öz

Improvement of nano-sized products with boron additives with remarkable properties has become a popular trend for many different application areas. Here, we have reported an efficient poly(vinyl) alcohol (PVA) based composite nanofiber which was functionalized with the hexagonal boron nitride (h-BN) via electrospinning technique, for the first time as far as known, for body-armor and protective clothing applications. PVA-based composite nanofibers containing h-BN with a diameter of approximately 326 nm have shown significant mechanical features compared to pure PVA nanofibers with a diameter of about 223 nm. Mechanical features were investigated by nanoindentation and the results of nanoindentation demonstrated that the elastic modulus of PVA nanofibers increased by 77%, and hardness values of polymeric nanofibers reached ten times more, by the addition of h-BN. FTIR and XRD characterizations approved that there is no chemical change of h-BN when it was integrated into the PVA based composite nanofibers. We exceptionally believe that the achieved results offer a potential lightness and cost-effective strategy for body armor and protective clothing applications in contrast to boron carbide-based body armor products, which have main problems such as weightiness and high-priced.

Teşekkür

The authors appreciate to Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University for which this study was carried out.

Kaynakça

  • [1] Hey-Hawkins, E., Teixidor, C.V., Boron-Based Compounds: Potential and Emerging Applications in Medicine, John Wiley & Sons, 2018.
  • [2] Venegas, J.M., McDermott, W.P., Hermans, I., Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation, Acc. Chem. Res.,51, 2556–2564, 2018.
  • [3] Jiang, N., Li, B., Ning, F., Xia, D., All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem., 27, 1651–1654, 2018.
  • [4] Yu, S., Wang, X., Pang, H., Zhang, R., et al., Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review, Chem. Eng. J., 333, 343–360, 2018.
  • [5] Zheng, Z., Cox, M., Li, B., Surface modification of hexagonal boron nitride nanomaterials: a review, J. Mater. Sci., 53, 66–99, 2018.
  • [6] Bosak, A., Serrano, J., Krisch, M., Watanabe, K., et al., Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements, Phys. Rev. B, 73, 41402, 2006.
  • [7] Jiang, S., Chen, Y., Duan, G., Mei, C., et al., Electrospun nanofiber reinforced composites: a review, Polym. Chem, 9, 2685–2720, 2018.
  • [8] Hwang, H.J., Barakat, N.A.M., Kanjwal, M.A., Sheikh, F.A., et al., Boron nitride nanofibers by the electrospinning technique, Macromol. Res., 18, 551–557, 2010.
  • [9] Ban, C., Li, L., Wei, L., Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film, RSC Adv., 8, 29141–29146, 2018.
  • [10] Mirhaji, E., Afshar, M., Rezvani, S., Yoosefian, M., Boron nitride nanotubes as a nanotransporter for anti-cancer docetaxel drug in water/ethanol solution, J. Mol. Liq., 271, 151–156, 2018.
  • [11] Jakubinek, M.B., Ashrafi, B., Martinez-Rubi, Y., Guan, J., et al., Boron Nitride Nanotube Composites and Applications, in: Nanotube Superfiber Materials, Elsevier, pp. 91–111, 2019.
  • [12] Esrafili, M.D., Heydari, S., Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO 2: a DFT study, Struct. Chem.,29, 275–283, 2018.
  • [13] Kvashnin, D.G., Matveev, A.T., Lebedev, O.I., Yakobson, B.I., et al., Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment, J. Phys. Chem. Lett., 9, 5086–5091, 2018.
  • [14] Oku, T., Narita, I., Tokoro, H., Synthesis and magnetic property of boron nitride nanocapsules encaging iron and cobalt nanoparticles, J. Phys. Chem. Solids, 67, 1152–1156, 2006.
  • [15] Oku, T., Kuno, M., Synthesis, argon/hydrogen storage and magnetic properties of boron nitride nanotubes and nanocapsules, Diam. Relat. Mater., 12, 840–845, 2003.
  • [16] Türkez, H., Arslan, M.E., Sönmez, E., Açikyildiz, M., et al., Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: Emphasis on toxicogenomics, Cytotechnology, 71, 351–361, 2019.
  • [17] Kıvanç, M., Barutca, B., Koparal, A.T., Göncü, Y., et al., Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability, Mater. Sci. Eng. C, 91, 115–124, 2018.
  • [18] Wang W., Li Z., Prestat E., Hashimoto T., Guan J., Kim K. S., Kingston C. T., et al., Reinforcement of polymer-based nanocomposites by thermally conductive and electrically insulating boron nitride nanotubes, ACS Appl. Nano Mater., 3 (1), 364-374, 2019.
  • [19] Li R., Lin J., Fang Y., Yu C., Zhang J., Xue Y., Liu Z., et al., Porous boron nitride nanofibers/PVA hydrogels with improved mechanical property and thermal stability, Ceram. Int., 44 (18), 22439-22444, 2018.
  • [20] Zhang R., Wan W., Qiu L., Wang Y., Zhou Y., Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation, Appl. Surf. Sci., 419, 342-347, 2017.
  • [21] Zhang J., Lei W., Chen J., Liu D., Tang B., Li J., Wang X., Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals, Polymer, 148, 101-108, 2018.
  • [22] Avci H., Akkulak E., Gergeroglu H., Ghorbanpoor H., Uysal O., Sariboyaci A. E., Demir B., et al., Flexible poly(styrene-ethylene-butadiene-styrene) hybrid nanofibers for bioengineering and water filtration applications, J. Appl. Polym. Sci., 137 (26), 49184, 2020.
  • [23] Avci H., Gergeroglu H., Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing, Polym. Bull., 76, 3709-3731, 2019.
  • [24] Avci H., Ghorbanpoor H., Nurbas M., Preparation of origanum minutiflorum oil-loaded core-shell structured chitosan nanofibers with tunable properties, Polym. Bull., 75, 4129-4144, 2018.
  • [25] Raghavan, P., Lim, D.-H., Ahn, J.-H., Nah, C., et al., Electrospun polymer nanofibers: The booming cutting edge technology, React. Funct. Polym., 72, 915–930, 2012.
  • [26] Yin, C.-G., Ma, Y., Liu, Z.-J., Fan, J.-C., et al., Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes, Polymer (Guildf),162, 100–107, 2019.
  • [20] Cakmak, Y., Canbolat, M.F., Cakmak, E., Dayik, M., Production and characterization of boron nitride-doped nanofiber mats created through electrospinning, J. Ind. Text., 47, 993–1005, 2018.
  • [28] Liu, Z., Zhao, K., Luo, J., Tang, Y., Electrospinning of boron nitride nanofibers with high temperature stability, Scr. Mater., 170, 116–119, 2019.
  • [29] Aydın, H., Çelik, S.Ü., Bozkurt, A., Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application, Solid State Ionics, 309, 71–76, 2017.
  • [30] Chen, M., Zhang, S., Zhang, J., Chen, Q., Electrospun Carbon Nanofiber/Boron Nitride Composites as Flexible Anodes for Lithium-Ion Batteries, J. Nanosci. Nanotechnol, 19, 220–225, 2019.
  • [31] Ozbek, B., Erdogan, B., Ekren, N., Oktar, F.N., et al., Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering, J. Aust. Ceram. Soc., 54, 251–260, 2018.
  • [32] Nasr, M., Viter, R., Eid, C., Habchi, R., et al., Enhanced photocatalytic performance of novel electrospun BN/TiO 2 composite nanofibers, New J. Chem., 41, 81–89, 2017.
  • [33] Economy, J., Anderson, R. V, Properties and uses of boron nitride fibers, Text. Res. J., 36, 994–1003, 1966.
  • [34] Crouch, I.G., Body armour–New materials, new systems, Def. Technol, 2019.
  • [35] Lakov, L., Shunqi, Z., St, A., Study of the effectiveness of corundum and boron carbide ceramics in hybrid protection systems, Secur. Futur., 3, 63–65, 2019.
  • [36] Cegła, M., Habaj, W., Podgórzak, P., Development of lightweight bulletproof vest inserts with increased protection capability, Probl. Mechatroniki Uzbroj. Lotnictwo, Inżynieria Bezpieczeństwa, 5, 23–34, 2014.
  • [37] Agrawal, B.J., High performance textiles for ballistic protection, Defense Science Research Conference and Expo (DSR), IEEE, pp. 1–4, 2011.
  • [38] Gorji, M., Bagherzadeh, R., Fashandi, H., Electrospun nanofibers in protective clothing, in: Electrospun Nanofibers, Elsevier, pp. 571–598, 2017.
  • [39] Jia, Y.-T., Gong, J., Gu, X.-H., Kim, H.-Y., et al., Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohydr. Polym., 67, 403–409, 2007.
  • [40] Kharazmi, A., Faraji, N., Hussin, R.M., Saion, E., et al., Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach, Beilstein J. Nanotechnol., 6, 529–536, 2015.
  • [41] Singh, B., Kaur, G., Singh, P., Singh, K., et al., Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy, Sci. Rep.,6, 35535, 2016.
  • [42] Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564–1583, 1992.
  • [43] Tan, E.P.S., Lim, C.T., Mechanical characterization of nanofibers–a review, Compos. Sci. Technol., 66, 1102–1111, 2006.
  • [44] Hussainova, I., Hamed, E., Jasiuk, I., Nanoindentation testing and modeling of chromium-carbide-based composites, Mech. Compos. Mater., 46, 667–678, 2011.
  • [45] Wimmer, R., Lucas, B.N., Oliver, W.C., Tsui, T.Y., Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique, Wood Sci. Technol., 31, 131–141, 1997.
  • [46] Qi, X., Yang, L., Zhu, J., Hou, Y., et al., Stiffer but more healable exponential layered assemblies with boron nitride nanoplatelets, ACS Nano, 10, 9434–9445, 2016.
  • [47] Sreedhara, M.B., Barua, M., Chaturvedi, A., Rao, C.N.R., et al., Borocarbonitride,(BN) X (C) 1-X, nanosheet-reinforced polymer nanocomposites for high mechanical performance, Carbon N. Y., 140, 688–695, 2018.
  • [48] Duan, Z.-Q., Liu, Y.-T., Xie, X.-M., Ye, X.-Y., A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chinese Chem. Lett., 24, 17–19, 2013.
  • [49] Dai, L., Long, Z., Ren, X., Deng, H., et al., Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers, J. Appl. Polym. Sci., 131, 2014.
  • [50] Ma, P., Wang, X., Xu, W., Cao, G., Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics, J. Appl. Polym. Sci., 114, 2887–2892, 2009.
Yıl 2020, Cilt: 5 Sayı: 4, 192 - 198, 29.12.2020
https://doi.org/10.30728/boron.696373

Öz

Kaynakça

  • [1] Hey-Hawkins, E., Teixidor, C.V., Boron-Based Compounds: Potential and Emerging Applications in Medicine, John Wiley & Sons, 2018.
  • [2] Venegas, J.M., McDermott, W.P., Hermans, I., Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation, Acc. Chem. Res.,51, 2556–2564, 2018.
  • [3] Jiang, N., Li, B., Ning, F., Xia, D., All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem., 27, 1651–1654, 2018.
  • [4] Yu, S., Wang, X., Pang, H., Zhang, R., et al., Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review, Chem. Eng. J., 333, 343–360, 2018.
  • [5] Zheng, Z., Cox, M., Li, B., Surface modification of hexagonal boron nitride nanomaterials: a review, J. Mater. Sci., 53, 66–99, 2018.
  • [6] Bosak, A., Serrano, J., Krisch, M., Watanabe, K., et al., Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements, Phys. Rev. B, 73, 41402, 2006.
  • [7] Jiang, S., Chen, Y., Duan, G., Mei, C., et al., Electrospun nanofiber reinforced composites: a review, Polym. Chem, 9, 2685–2720, 2018.
  • [8] Hwang, H.J., Barakat, N.A.M., Kanjwal, M.A., Sheikh, F.A., et al., Boron nitride nanofibers by the electrospinning technique, Macromol. Res., 18, 551–557, 2010.
  • [9] Ban, C., Li, L., Wei, L., Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film, RSC Adv., 8, 29141–29146, 2018.
  • [10] Mirhaji, E., Afshar, M., Rezvani, S., Yoosefian, M., Boron nitride nanotubes as a nanotransporter for anti-cancer docetaxel drug in water/ethanol solution, J. Mol. Liq., 271, 151–156, 2018.
  • [11] Jakubinek, M.B., Ashrafi, B., Martinez-Rubi, Y., Guan, J., et al., Boron Nitride Nanotube Composites and Applications, in: Nanotube Superfiber Materials, Elsevier, pp. 91–111, 2019.
  • [12] Esrafili, M.D., Heydari, S., Carbon-doped boron-nitride fullerenes as efficient metal-free catalysts for oxidation of SO 2: a DFT study, Struct. Chem.,29, 275–283, 2018.
  • [13] Kvashnin, D.G., Matveev, A.T., Lebedev, O.I., Yakobson, B.I., et al., Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment, J. Phys. Chem. Lett., 9, 5086–5091, 2018.
  • [14] Oku, T., Narita, I., Tokoro, H., Synthesis and magnetic property of boron nitride nanocapsules encaging iron and cobalt nanoparticles, J. Phys. Chem. Solids, 67, 1152–1156, 2006.
  • [15] Oku, T., Kuno, M., Synthesis, argon/hydrogen storage and magnetic properties of boron nitride nanotubes and nanocapsules, Diam. Relat. Mater., 12, 840–845, 2003.
  • [16] Türkez, H., Arslan, M.E., Sönmez, E., Açikyildiz, M., et al., Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: Emphasis on toxicogenomics, Cytotechnology, 71, 351–361, 2019.
  • [17] Kıvanç, M., Barutca, B., Koparal, A.T., Göncü, Y., et al., Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability, Mater. Sci. Eng. C, 91, 115–124, 2018.
  • [18] Wang W., Li Z., Prestat E., Hashimoto T., Guan J., Kim K. S., Kingston C. T., et al., Reinforcement of polymer-based nanocomposites by thermally conductive and electrically insulating boron nitride nanotubes, ACS Appl. Nano Mater., 3 (1), 364-374, 2019.
  • [19] Li R., Lin J., Fang Y., Yu C., Zhang J., Xue Y., Liu Z., et al., Porous boron nitride nanofibers/PVA hydrogels with improved mechanical property and thermal stability, Ceram. Int., 44 (18), 22439-22444, 2018.
  • [20] Zhang R., Wan W., Qiu L., Wang Y., Zhou Y., Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation, Appl. Surf. Sci., 419, 342-347, 2017.
  • [21] Zhang J., Lei W., Chen J., Liu D., Tang B., Li J., Wang X., Enhancing the thermal and mechanical properties of polyvinyl alcohol (PVA) with boron nitride nanosheets and cellulose nanocrystals, Polymer, 148, 101-108, 2018.
  • [22] Avci H., Akkulak E., Gergeroglu H., Ghorbanpoor H., Uysal O., Sariboyaci A. E., Demir B., et al., Flexible poly(styrene-ethylene-butadiene-styrene) hybrid nanofibers for bioengineering and water filtration applications, J. Appl. Polym. Sci., 137 (26), 49184, 2020.
  • [23] Avci H., Gergeroglu H., Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing, Polym. Bull., 76, 3709-3731, 2019.
  • [24] Avci H., Ghorbanpoor H., Nurbas M., Preparation of origanum minutiflorum oil-loaded core-shell structured chitosan nanofibers with tunable properties, Polym. Bull., 75, 4129-4144, 2018.
  • [25] Raghavan, P., Lim, D.-H., Ahn, J.-H., Nah, C., et al., Electrospun polymer nanofibers: The booming cutting edge technology, React. Funct. Polym., 72, 915–930, 2012.
  • [26] Yin, C.-G., Ma, Y., Liu, Z.-J., Fan, J.-C., et al., Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes, Polymer (Guildf),162, 100–107, 2019.
  • [20] Cakmak, Y., Canbolat, M.F., Cakmak, E., Dayik, M., Production and characterization of boron nitride-doped nanofiber mats created through electrospinning, J. Ind. Text., 47, 993–1005, 2018.
  • [28] Liu, Z., Zhao, K., Luo, J., Tang, Y., Electrospinning of boron nitride nanofibers with high temperature stability, Scr. Mater., 170, 116–119, 2019.
  • [29] Aydın, H., Çelik, S.Ü., Bozkurt, A., Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application, Solid State Ionics, 309, 71–76, 2017.
  • [30] Chen, M., Zhang, S., Zhang, J., Chen, Q., Electrospun Carbon Nanofiber/Boron Nitride Composites as Flexible Anodes for Lithium-Ion Batteries, J. Nanosci. Nanotechnol, 19, 220–225, 2019.
  • [31] Ozbek, B., Erdogan, B., Ekren, N., Oktar, F.N., et al., Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering, J. Aust. Ceram. Soc., 54, 251–260, 2018.
  • [32] Nasr, M., Viter, R., Eid, C., Habchi, R., et al., Enhanced photocatalytic performance of novel electrospun BN/TiO 2 composite nanofibers, New J. Chem., 41, 81–89, 2017.
  • [33] Economy, J., Anderson, R. V, Properties and uses of boron nitride fibers, Text. Res. J., 36, 994–1003, 1966.
  • [34] Crouch, I.G., Body armour–New materials, new systems, Def. Technol, 2019.
  • [35] Lakov, L., Shunqi, Z., St, A., Study of the effectiveness of corundum and boron carbide ceramics in hybrid protection systems, Secur. Futur., 3, 63–65, 2019.
  • [36] Cegła, M., Habaj, W., Podgórzak, P., Development of lightweight bulletproof vest inserts with increased protection capability, Probl. Mechatroniki Uzbroj. Lotnictwo, Inżynieria Bezpieczeństwa, 5, 23–34, 2014.
  • [37] Agrawal, B.J., High performance textiles for ballistic protection, Defense Science Research Conference and Expo (DSR), IEEE, pp. 1–4, 2011.
  • [38] Gorji, M., Bagherzadeh, R., Fashandi, H., Electrospun nanofibers in protective clothing, in: Electrospun Nanofibers, Elsevier, pp. 571–598, 2017.
  • [39] Jia, Y.-T., Gong, J., Gu, X.-H., Kim, H.-Y., et al., Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohydr. Polym., 67, 403–409, 2007.
  • [40] Kharazmi, A., Faraji, N., Hussin, R.M., Saion, E., et al., Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach, Beilstein J. Nanotechnol., 6, 529–536, 2015.
  • [41] Singh, B., Kaur, G., Singh, P., Singh, K., et al., Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy, Sci. Rep.,6, 35535, 2016.
  • [42] Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564–1583, 1992.
  • [43] Tan, E.P.S., Lim, C.T., Mechanical characterization of nanofibers–a review, Compos. Sci. Technol., 66, 1102–1111, 2006.
  • [44] Hussainova, I., Hamed, E., Jasiuk, I., Nanoindentation testing and modeling of chromium-carbide-based composites, Mech. Compos. Mater., 46, 667–678, 2011.
  • [45] Wimmer, R., Lucas, B.N., Oliver, W.C., Tsui, T.Y., Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique, Wood Sci. Technol., 31, 131–141, 1997.
  • [46] Qi, X., Yang, L., Zhu, J., Hou, Y., et al., Stiffer but more healable exponential layered assemblies with boron nitride nanoplatelets, ACS Nano, 10, 9434–9445, 2016.
  • [47] Sreedhara, M.B., Barua, M., Chaturvedi, A., Rao, C.N.R., et al., Borocarbonitride,(BN) X (C) 1-X, nanosheet-reinforced polymer nanocomposites for high mechanical performance, Carbon N. Y., 140, 688–695, 2018.
  • [48] Duan, Z.-Q., Liu, Y.-T., Xie, X.-M., Ye, X.-Y., A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chinese Chem. Lett., 24, 17–19, 2013.
  • [49] Dai, L., Long, Z., Ren, X., Deng, H., et al., Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers, J. Appl. Polym. Sci., 131, 2014.
  • [50] Ma, P., Wang, X., Xu, W., Cao, G., Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics, J. Appl. Polym. Sci., 114, 2887–2892, 2009.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Hazal Gergeroglu 0000-0001-8369-9221

Neslihan Sakar Bu kişi benim 0000-0002-9541-194X

Hamed Ghorbanpoor 0000-0002-2665-8172

Çağlar Özer Bu kişi benim 0000-0002-8127-741X

Yayımlanma Tarihi 29 Aralık 2020
Kabul Tarihi 17 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 4

Kaynak Göster

APA Gergeroglu, H., Sakar, N., Ghorbanpoor, H., Özer, Ç. (2020). Enhancing the mechanical features of poly(vinyl) alcohol nanofibers with the addition of boron nitride. Journal of Boron, 5(4), 192-198. https://doi.org/10.30728/boron.696373