Research Article
BibTex RIS Cite

Fungicide and Arbuscular Mycorrhiza Fungi Applications in Tomato

Year 2022, Volume: 5 Issue: 3, 212 - 219, 01.07.2022
https://doi.org/10.47115/bsagriculture.1088700

Abstract

Tomato is one of the important food crops of the world. It has rich essential nutrients features. However, tomato plants are sensitive to certain diseases and pests. This situation causes intense and unconscious pesticide use to avoid crop losses. It is known that mycorrhiza provide many advantages to plant. In this study, the effects of different doses of fungicide applications on some physiological parameters were examined in mycorrhiza applied and non-applied mycorrhiza tomato plants. A pesticide was applied at different doses which were, namely, recommend (R), half of recommend (R/2), and two-fold recommend (R×2). The content of proline, chlorophyll and carotenoid analysis were conducted in the plant samples. Proline values were found low in mycorrhizal than non-mycorrhizal plants in all pesticide doses (P<0.05). However, mycorrhiza*dose interaction was statistically significant (P<0.01). It was found statistically significant in chlorophyll-a (P<0.01), chlorophyll-b (P<0.05), total chlorophyll (P<0.01), and carotenoid (P<0.05) values in terms of mycorrhiza*dose interaction. We suggest that studied arbuscular mycorrhiza may increase at highly the resistance tolerance to fungicide. AMF is suitable option for low chemical input and nature conservation based sustainable agriculture.

References

  • Abdel Latef AA, Chaoxing H. 2011. Effects of arbucsular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort, 127: 228-233.
  • Abdulhadi S, Saymen M, Türkmen Ö. 2017. Effect of Arbuscular Mycorrhizal Fungus Application on Seedling Development of pumpkinin Saline Soil Conditions. Manas J Agr Vet Life Sci, 7(2): 1-12.
  • Adiloğlu S, Eryılmaz FY, Solmaz Y, Adiloğlu A. 2018. The effect of increasing mycorrhiza applications on nutrition of pak choi (Brassica rapa L. subsp. chinensis L.) plant. Inter J Secondary Metabol, 5(1): 27-33.
  • Akay A, Karaarslan E. 2012. Mikoriza aşılanmış kudret narı (Momordica Charantia) bitkisine farklı dozlarda fosforlu ve demirli gübre uygulamasının yaprak klorofil içeriğine etkisi. Iğdır Univ J Inst Sci Tech, 2(3): 103-108.
  • Alaux PL, Zhang Y, Gilbert L, Johnson D. 2021. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants, People, Planet 3 (5): 433-444.
  • Al-Hmoud G, Al-Momany A. 2017. Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements. Adv Crop Sci Technol, 5: 1–6.
  • Al-Karaki GN. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
  • Almaca A. 2014. Tarımsal üretimde mikorizanın önemi. Harran Tar Gıda Bilim Derg, 18(2): 58-67.
  • Appah S, Jia W, Ou M, Wang P, Asante EA. 2020. Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application. Crop Protect, 127: 104961.
  • Asraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 59: 206216.
  • Auge RM. 2001. Water relation drought and vesicular arbuscular mycorrhiza symbiosis. Mycorrhiza, 11: 3-42.
  • Azimi R, Heshmati GA, Kianian MK. 2018. Effects of drought stress and mycorrhiza on viability and vegetative growth characteristics of Ziziphora clinopodioides Lam J Rangeland Sci, 8: 3.
  • Bates LS. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
  • Battke F, Schramel P and Ernst D. 2003. A novel method for in vitro culture of plants: cultivation of barky in a floating hydroponic system. Plant Molec Biol Rep, 21: 405-409.
  • Biçici M. 2011. Bitki hastalık etmenleri ile biyolojik mücadelenin başarısını arttırmada mikorizanın rolü. Türk Biyo Müc Derg, 2(2): 139-174.
  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G. 2016. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality, and nutritional value of tomato: A field study. Mycorrhiza, 27(6): 1–11.
  • Capinera JL. 2005. Relationships between insect pests and weeds: an evolutionary perspective. Weed Sci, 53(6): 892-901.
  • Claussen W. 2005. Proline as a measure of stress in tomato plants. Plant Sci, 168(1): 241-248.
  • Charest C, Dalphe Y, Brown A. 1993. The effect of vesicular-arbuscular mycorrhizae and chilling on 2 hybrids of Zea mays L. Mycorrhiza 4(2): 89-92.
  • Cordier AT, Gianinazzi S, Gianinazz-Pearson V. 1996. Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi. Agronomie, 16: 676-688.
  • Çekiç C, Yılmaz E. 2011. Effect of arbuscular mycorrhiza and different doses of phosphor on vegetative and generative components of strawberries applied with different phosphor doses in soilless culture. African J Agric Res, 6(20): 4736-4739.
  • Çetinkaya N, Dura S. 2010. Mısır vejetatif gelişimi ve verimi üzerinde bir endomikorizal preparatın etkileri. Ege Üniv Zir Fak Derg, 47(1): 53-59.
  • Delen N, Kınay P, Yıldız F, Yıldız M, Altınok H and Uçkun H. 2010. Türkiye tarımında kimyasal savaşımın durumu ve entegre savasım olanakları. Türkiye Ziraat Mühendisliği 7. Teknik Kongre, 1 - 04 Ocak, Ankara, Türkiye, ss. 609-625.
  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10): 370.
  • Erzurumlu GS, Kara E. 2014. Mikoriza konusunda Türkiye’de yapılan çalışmalar. Türk Bilim Derleme Derg, 7(2): 55-65.
  • Fritz V, Tereucán G, Santander C, Contreras B, Cornejo P, Ferreira PAA, Ruiz A. 2022. Effect of inoculation with arbuscular mycorrhizal fungi and fungicide application on the secondary metabolism of solanum tuberosum leaves. Plants, 11(3): 278.
  • Ganugi P, Masoni A, Pietramellara G, Benedettelli S. 2019. A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy, 9(12): 840.
  • Garanzini DS, Menone ML. 2015. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense. Bullet Environ Contamin Toxicol, 94(2): 146-151.
  • Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol, 24(2): 227-239.
  • Gogoi P. 2011. Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol, 4: 119–125.
  • Gonzalez-Chavez C, D’Haen J, Vangronsveld J, Dodd JC. 2002. Copper adsorption and accumulation by the external mycelium of three arbuscular mycorrhiza fungi from polluted soils. J Plant Soil, 240(2): 287–297.
  • Hage‐Ahmed K, Rosner K, Steinkellner S. 2018. Arbuscular mycorrhizal fungi and them response to pesticides. Pest Manage Sci, 75(3): 583-590.
  • Hajiboland R, Aliasgharzadeh A, Laiegh A, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil, 331: 313-327.
  • Hazra DK, Purkait A. 2019. Role of pesticide formulations for sustainable crop protection and environment management: A review. J Pharmacogn Phytochem, 8: 686-693.
  • Hopkins WG. 1995. Introduction to plant physiology. John Wiley & Sons, Inc., New York, U.S.A, 1th ed., pp 115, 271, 449.
  • Ibijbijen J, Urquiaga S, Ismaili M, Alves BJR, Boddey RM. 1996. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol, 134: 353–360.
  • Kapoor R, Chaudhary V, Bhatnagar AK. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17: 581–587.
  • Kaymak S. 2022. Effects of some commercial products on root and crown rot caused by Phytophthora cactorum in apple cultivation. Turkish J Agri Forest, 46(1): 19-27.
  • Lenoir I, Fontaine J and Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochem, 123: 4–15.
  • Matysik JA, Bhalu B, Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci, 82 (5): 525-532.
  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ. 2008. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem, 40(5): 1197-1206.
  • Mohamed HI, El-Beltagi H S, Aly AA, Latif HH. 2018. The role of systemic and non-systemic fungicides on the physiological and biochemical parameters in plant: implications for defense responses. FEB Fres Environ Bull, 27: 8585.
  • Murrell EG, Ray S, Lemmon ME, Luthe DS, Kaye JP. 2020. Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renewable Agri Food Systems, 35(5): 467-474.
  • Özbucak T, Kabul D. 2019. Mikoriza uygulanmış ve uygulanmamış domates bitkisinde farklı fungusit dozlarının meyve kalite parametreleri üzerindeki etkilerinin karşılaştırılması. Adnan Menderes Üniv Zir Fak Derg, 16 (2): 161-168.
  • Özbucak T, Kabul D, Akçin ÖE. 2020. Mikoriza ve fungusit uygulamalarının domates bitkisinin bazı büyüme ve gelişim parametreleri üzerine etkisi. Bilecik Şeyh Edebali Üniv Fen Bilim Derg, 7 (1): 529-543.
  • Özdener Y and Kutbay HG. 2011. Physiologıcal and biochemical responses of the leaves Verbascum wiedemanniinum Fisch. & Mey. To Cadmium. Pak J Bot, 43 (3): 1521-1525.
  • Özörgücü B, Gönüz A and Demiray H (1990). Effect of antracole on tobacco. In: Proceedings of the X. National Biology Congress, July 18-20, Erzurum, Türkiye, 2: 43-53.
  • Öztekin GB, Ece M. 2014. Determination of symbion vam (glomus fasciculatum) inoculation effect on plant growth, yield and fruit quality of tomato grown in greenhouse. Turk J Agric Res, 1: 35-42.
  • Qasid ALI, Kurubaş MS, Erkan M. 2022. Biochemical Composition and Antioxidant Activity of Different Types of Tomatoes Affected by Ethylene Treatment. J Agri Sci, 28(1): 8-15.
  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB. 2016. Global threat to agriculture from invasive species. Proceed National Acad Sci, 113(27): 7575-7579.
  • Santos JB, Jakelaitis A, Silva AA, Costa MD, Manabe A, Silva MCS. 2006. Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till and no-till systems. Weed Res, 46: 284–289.
  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R. 2016. Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf, 133: 195–201.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Zheng B. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regulat, 39(2): 509-531.
  • Song YY, Zeng RS, Xu F, Li J, Shen X, Yihdego WG. 2010. Interplant communication of tomato plants through underground common mycorrhizal networks. Plos one 5 (10): e13324.
  • Tilak K, Ranganayaki NKK, Pal KK, De R, Saxena AK. 2005. Diversity of plant growth and soil health supporting bacteria, Current Sci, 89: 1.
  • Topaloğlu K. 2010. Tuz stresinin chili biberlerinin pigment ve kapsaisinoid değişimi ile peroksidaz aktivitesi arasındaki ilişki. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, Türkiye, ss. 144.
  • Tort N, Öztürk İ, Tosun N. 2004. Fungisit uygulamalarının domates (Lycopersicon esculentum Mill.)’in anatomik yapısı ve fizyolojisi üzerine etkisi. Ege Üniv Zir Fak Derg, 41: 111-122.
  • Tiryaki O, Canhilal R Horuz S. 2010. Tarım ilacları kullanımı ve riskleri. Erciyes Üniv Fen Bilim Enstit Derg, 26(2): 154-169.
  • Velázquez M, Andreu PP, Carrasco A, Matute A. 2010. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Revue des Régions Arides – Numéro spécial– 24: 722-727.
  • Wu M, Yan Y, Wang Y, Mao Q, Fu Y, Peng X, Ahammed GJ. 2021. Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctonia solani in watermelon by alleviating oxidative stress. Biol Control. 152: 104433.
  • Yıldıztekin M, Tuna AL. 2015. Ayçiçeği (Helianthus annuus L.) bitkisi polikültür koşullarda yetiştirildiğinde bor alımı etkilenir mi? Ege Üniv Zir Fak Derg, 52(1): 99-106.
  • Xavier LJC and Germida JJ. 1999. Impact of human activities on mycorrhizae. Impact of Humans on Soil Microorganisms. In Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic Canada Society for Microbial Ecology, 9–14 August, Halifax, Canada, pp. 1-6.
  • Zhu X, Song F, Xu H. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20: 325–332.
Year 2022, Volume: 5 Issue: 3, 212 - 219, 01.07.2022
https://doi.org/10.47115/bsagriculture.1088700

Abstract

References

  • Abdel Latef AA, Chaoxing H. 2011. Effects of arbucsular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort, 127: 228-233.
  • Abdulhadi S, Saymen M, Türkmen Ö. 2017. Effect of Arbuscular Mycorrhizal Fungus Application on Seedling Development of pumpkinin Saline Soil Conditions. Manas J Agr Vet Life Sci, 7(2): 1-12.
  • Adiloğlu S, Eryılmaz FY, Solmaz Y, Adiloğlu A. 2018. The effect of increasing mycorrhiza applications on nutrition of pak choi (Brassica rapa L. subsp. chinensis L.) plant. Inter J Secondary Metabol, 5(1): 27-33.
  • Akay A, Karaarslan E. 2012. Mikoriza aşılanmış kudret narı (Momordica Charantia) bitkisine farklı dozlarda fosforlu ve demirli gübre uygulamasının yaprak klorofil içeriğine etkisi. Iğdır Univ J Inst Sci Tech, 2(3): 103-108.
  • Alaux PL, Zhang Y, Gilbert L, Johnson D. 2021. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants, People, Planet 3 (5): 433-444.
  • Al-Hmoud G, Al-Momany A. 2017. Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements. Adv Crop Sci Technol, 5: 1–6.
  • Al-Karaki GN. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
  • Almaca A. 2014. Tarımsal üretimde mikorizanın önemi. Harran Tar Gıda Bilim Derg, 18(2): 58-67.
  • Appah S, Jia W, Ou M, Wang P, Asante EA. 2020. Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application. Crop Protect, 127: 104961.
  • Asraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 59: 206216.
  • Auge RM. 2001. Water relation drought and vesicular arbuscular mycorrhiza symbiosis. Mycorrhiza, 11: 3-42.
  • Azimi R, Heshmati GA, Kianian MK. 2018. Effects of drought stress and mycorrhiza on viability and vegetative growth characteristics of Ziziphora clinopodioides Lam J Rangeland Sci, 8: 3.
  • Bates LS. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
  • Battke F, Schramel P and Ernst D. 2003. A novel method for in vitro culture of plants: cultivation of barky in a floating hydroponic system. Plant Molec Biol Rep, 21: 405-409.
  • Biçici M. 2011. Bitki hastalık etmenleri ile biyolojik mücadelenin başarısını arttırmada mikorizanın rolü. Türk Biyo Müc Derg, 2(2): 139-174.
  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G. 2016. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality, and nutritional value of tomato: A field study. Mycorrhiza, 27(6): 1–11.
  • Capinera JL. 2005. Relationships between insect pests and weeds: an evolutionary perspective. Weed Sci, 53(6): 892-901.
  • Claussen W. 2005. Proline as a measure of stress in tomato plants. Plant Sci, 168(1): 241-248.
  • Charest C, Dalphe Y, Brown A. 1993. The effect of vesicular-arbuscular mycorrhizae and chilling on 2 hybrids of Zea mays L. Mycorrhiza 4(2): 89-92.
  • Cordier AT, Gianinazzi S, Gianinazz-Pearson V. 1996. Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi. Agronomie, 16: 676-688.
  • Çekiç C, Yılmaz E. 2011. Effect of arbuscular mycorrhiza and different doses of phosphor on vegetative and generative components of strawberries applied with different phosphor doses in soilless culture. African J Agric Res, 6(20): 4736-4739.
  • Çetinkaya N, Dura S. 2010. Mısır vejetatif gelişimi ve verimi üzerinde bir endomikorizal preparatın etkileri. Ege Üniv Zir Fak Derg, 47(1): 53-59.
  • Delen N, Kınay P, Yıldız F, Yıldız M, Altınok H and Uçkun H. 2010. Türkiye tarımında kimyasal savaşımın durumu ve entegre savasım olanakları. Türkiye Ziraat Mühendisliği 7. Teknik Kongre, 1 - 04 Ocak, Ankara, Türkiye, ss. 609-625.
  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10): 370.
  • Erzurumlu GS, Kara E. 2014. Mikoriza konusunda Türkiye’de yapılan çalışmalar. Türk Bilim Derleme Derg, 7(2): 55-65.
  • Fritz V, Tereucán G, Santander C, Contreras B, Cornejo P, Ferreira PAA, Ruiz A. 2022. Effect of inoculation with arbuscular mycorrhizal fungi and fungicide application on the secondary metabolism of solanum tuberosum leaves. Plants, 11(3): 278.
  • Ganugi P, Masoni A, Pietramellara G, Benedettelli S. 2019. A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy, 9(12): 840.
  • Garanzini DS, Menone ML. 2015. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense. Bullet Environ Contamin Toxicol, 94(2): 146-151.
  • Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol, 24(2): 227-239.
  • Gogoi P. 2011. Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol, 4: 119–125.
  • Gonzalez-Chavez C, D’Haen J, Vangronsveld J, Dodd JC. 2002. Copper adsorption and accumulation by the external mycelium of three arbuscular mycorrhiza fungi from polluted soils. J Plant Soil, 240(2): 287–297.
  • Hage‐Ahmed K, Rosner K, Steinkellner S. 2018. Arbuscular mycorrhizal fungi and them response to pesticides. Pest Manage Sci, 75(3): 583-590.
  • Hajiboland R, Aliasgharzadeh A, Laiegh A, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil, 331: 313-327.
  • Hazra DK, Purkait A. 2019. Role of pesticide formulations for sustainable crop protection and environment management: A review. J Pharmacogn Phytochem, 8: 686-693.
  • Hopkins WG. 1995. Introduction to plant physiology. John Wiley & Sons, Inc., New York, U.S.A, 1th ed., pp 115, 271, 449.
  • Ibijbijen J, Urquiaga S, Ismaili M, Alves BJR, Boddey RM. 1996. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol, 134: 353–360.
  • Kapoor R, Chaudhary V, Bhatnagar AK. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17: 581–587.
  • Kaymak S. 2022. Effects of some commercial products on root and crown rot caused by Phytophthora cactorum in apple cultivation. Turkish J Agri Forest, 46(1): 19-27.
  • Lenoir I, Fontaine J and Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochem, 123: 4–15.
  • Matysik JA, Bhalu B, Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci, 82 (5): 525-532.
  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ. 2008. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem, 40(5): 1197-1206.
  • Mohamed HI, El-Beltagi H S, Aly AA, Latif HH. 2018. The role of systemic and non-systemic fungicides on the physiological and biochemical parameters in plant: implications for defense responses. FEB Fres Environ Bull, 27: 8585.
  • Murrell EG, Ray S, Lemmon ME, Luthe DS, Kaye JP. 2020. Cover crop species affect mycorrhizae-mediated nutrient uptake and pest resistance in maize. Renewable Agri Food Systems, 35(5): 467-474.
  • Özbucak T, Kabul D. 2019. Mikoriza uygulanmış ve uygulanmamış domates bitkisinde farklı fungusit dozlarının meyve kalite parametreleri üzerindeki etkilerinin karşılaştırılması. Adnan Menderes Üniv Zir Fak Derg, 16 (2): 161-168.
  • Özbucak T, Kabul D, Akçin ÖE. 2020. Mikoriza ve fungusit uygulamalarının domates bitkisinin bazı büyüme ve gelişim parametreleri üzerine etkisi. Bilecik Şeyh Edebali Üniv Fen Bilim Derg, 7 (1): 529-543.
  • Özdener Y and Kutbay HG. 2011. Physiologıcal and biochemical responses of the leaves Verbascum wiedemanniinum Fisch. & Mey. To Cadmium. Pak J Bot, 43 (3): 1521-1525.
  • Özörgücü B, Gönüz A and Demiray H (1990). Effect of antracole on tobacco. In: Proceedings of the X. National Biology Congress, July 18-20, Erzurum, Türkiye, 2: 43-53.
  • Öztekin GB, Ece M. 2014. Determination of symbion vam (glomus fasciculatum) inoculation effect on plant growth, yield and fruit quality of tomato grown in greenhouse. Turk J Agric Res, 1: 35-42.
  • Qasid ALI, Kurubaş MS, Erkan M. 2022. Biochemical Composition and Antioxidant Activity of Different Types of Tomatoes Affected by Ethylene Treatment. J Agri Sci, 28(1): 8-15.
  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB. 2016. Global threat to agriculture from invasive species. Proceed National Acad Sci, 113(27): 7575-7579.
  • Santos JB, Jakelaitis A, Silva AA, Costa MD, Manabe A, Silva MCS. 2006. Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till and no-till systems. Weed Res, 46: 284–289.
  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R. 2016. Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf, 133: 195–201.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Zheng B. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regulat, 39(2): 509-531.
  • Song YY, Zeng RS, Xu F, Li J, Shen X, Yihdego WG. 2010. Interplant communication of tomato plants through underground common mycorrhizal networks. Plos one 5 (10): e13324.
  • Tilak K, Ranganayaki NKK, Pal KK, De R, Saxena AK. 2005. Diversity of plant growth and soil health supporting bacteria, Current Sci, 89: 1.
  • Topaloğlu K. 2010. Tuz stresinin chili biberlerinin pigment ve kapsaisinoid değişimi ile peroksidaz aktivitesi arasındaki ilişki. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, Türkiye, ss. 144.
  • Tort N, Öztürk İ, Tosun N. 2004. Fungisit uygulamalarının domates (Lycopersicon esculentum Mill.)’in anatomik yapısı ve fizyolojisi üzerine etkisi. Ege Üniv Zir Fak Derg, 41: 111-122.
  • Tiryaki O, Canhilal R Horuz S. 2010. Tarım ilacları kullanımı ve riskleri. Erciyes Üniv Fen Bilim Enstit Derg, 26(2): 154-169.
  • Velázquez M, Andreu PP, Carrasco A, Matute A. 2010. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Revue des Régions Arides – Numéro spécial– 24: 722-727.
  • Wu M, Yan Y, Wang Y, Mao Q, Fu Y, Peng X, Ahammed GJ. 2021. Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctonia solani in watermelon by alleviating oxidative stress. Biol Control. 152: 104433.
  • Yıldıztekin M, Tuna AL. 2015. Ayçiçeği (Helianthus annuus L.) bitkisi polikültür koşullarda yetiştirildiğinde bor alımı etkilenir mi? Ege Üniv Zir Fak Derg, 52(1): 99-106.
  • Xavier LJC and Germida JJ. 1999. Impact of human activities on mycorrhizae. Impact of Humans on Soil Microorganisms. In Proceedings of the 8th International Symposium on Microbial Ecology Bell CR, Brylinsky M, Johnson-Green P (eds) Atlantic Canada Society for Microbial Ecology, 9–14 August, Halifax, Canada, pp. 1-6.
  • Zhu X, Song F, Xu H. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20: 325–332.
There are 63 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Tuğba Özbucak 0000-0002-4784-3537

Döndü Kabul This is me 0000-0002-6555-8107

Publication Date July 1, 2022
Submission Date March 16, 2022
Acceptance Date April 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Özbucak, T., & Kabul, D. (2022). Fungicide and Arbuscular Mycorrhiza Fungi Applications in Tomato. Black Sea Journal of Agriculture, 5(3), 212-219. https://doi.org/10.47115/bsagriculture.1088700

                                                  24890