Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Some Spraying Characteristics of Different Air Induction Nozzles

Yıl 2025, Cilt: 8 Sayı: 2, 263 - 269
https://doi.org/10.47115/bsagriculture.1639335

Öz

Although there are alternative methods of struggle against diseases, pests and weeds in agricultural production, chemical control method is widely preferred. The ability of the pesticide to show sufficient effect on the target surfaces depends on the correct functioning of the nozzles. In plant protection applications, it is necessary to make the pesticide in the appropriate nozzle type, spraying height, spraying pressure, forward speed and norm values. This study was carried out to determine the surface coverage, droplet frequency and volume median diameter of different air induction nozzles at different spraying heights and spray pressures. In the study; four different nozzles, three with air induction (ID 90-03 C, IDK 120-03, AITX B 8003) and one with hollow cone nozzle (TR 80-03), were used. This study conducted in field conditions. Two different spray heights (50 cm, 70 cm) and three different spray pressures (2 bar, 4 bar, 6 bar) were applied. As a result of the applications, the volume median diameter, droplet frequency and surface coverage were examined. Water sensitive papers and Image Tool for Windows V3 image processing program were used to determine the volume median diameter and surface coverage. The excel program was used to calculate the droplet frequency values. According to the results of the research, the highest surface coverage rate was achieved with 37.29% at IDK 120-03 nozzle at 70 cm spraying height and 6 bar spray pressure. The lowest surface coverage was obtained with the TR 80-03 nozzle at a spray height of 70 cm and pressure of 6 bar with 9.33%. The largest volume median diameter was 547.01 µm in AITX B 8003 nozzle and 256.60 µm in the smallest volume median diameter TR 80-03 nozzle. The highest droplet frequency is 74 (pcs / cm2) at TR 80-03 nozzle with 50 cm spraying height and 2 bar spray pressure, while the lowest droplet frequency is 8 (pcs / cm2) at 50 cm spray height and 2 bar spray pressure at AITX B 8003 nozzle was obtained.

Etik Beyan

Ethics committee approval was not required for this study because there was no study on animals or humans.

Teşekkür

This article was prepared from the master's thesis study carried out in the Department of Agricultural Machinery and Technologies Engineering at Ondokuz Mayıs University.

Kaynakça

  • Açık N. 2018. Püskürtme memelerinin düşük dacimde yüzey kaplama ve damla dağılım düzgünlüğü açısından karşılaştırılması. Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye, ss: 71.
  • Anonymous. 2020. Food and agriculture organization of the united nations (FAO). http://www.fao.org/site (accessed date: December 29, 2020).
  • Anonymous. 2024a. https://imagetool.software.informer.com/ (accessed date: December 10, 2024).
  • Anonymous. 2024b. https://www.syngenta.com.au/awri. (accessed date: December 1, 2024).
  • ASABE. 2009. ASABE Standard 572.1: Spray nozzle classification by droplet spectra. American Society of Agricultural and Biological Engineers, St. Joseph, MI, Miami, USA.
  • Balsari P, Gil E, Marucco P, van de Zande J C, Nuyttens D, Herbst A, Gallart M. 2017. Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type. Biosystem Engin, 154: 3-13.
  • Caner Ö. 2007. Yardımcı hava akımlı hidrolik pülverizatörle bağ ilaçlamasında toprak yüzeyine sürüklenmeyi azaltmaya yönelik en uygun kullanım koşullarının belirlenmesi. Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye, ss: 216
  • Çelen İ. H. 1998. Yelpaze hüzmeli püskürtme memelerinde aşınmanın pülverizasyon karakteristiklerine etkisi üzerine bir arastırma. Doktora Tezi, Tekirdağ Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, Türkiye, ss: 105 s.
  • Çelen I. H. Aktas T. 2000. The effect of drop size on drift. EurAgEng 2000, Paper No: 00-PM-052, Warwick, U.K.
  • Çelen İ. H. 2013. Tarımsal mücadelede püskürtme memeleri. Toprak Ofset, Tekirdağ, Türkiye, ss: 111.
  • Chiu H W, Lee F F, Liang L S. 1999. Using image processing technique to measure spray coverage. J Agri Res China, 48(4): 96-110.
  • Çilingir İ, Dursun E. 2010. Bitki koruma makinaları. Ankara Üniversitesi Ziraat Fakültesi Yayınları. Yayın No:1531, Ankara, Türkiye, ss: 56.
  • Çomaklı, M. 2017. Poliasetal (pom) meme plakalarında püskürtme açısına etki eden faktörler ve pülverizasyon karakteristikleri. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makineleri Anabilim Dalı, Erzurum, Türkiye, ss: 78.
  • Dafsari R. A, Yu S, Choi Y, Lee J. 2021. Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engin, 209: 14-29.
  • Dou H, Wang S, Zhai C, Chen L, Wang X, Zhao X. 2021. A lidar sensor-based spray boom height detection method and the corresponding experimental validation. Sensors, 21(6): 2107.
  • Duran H. 2012. Fındık kurdu [Curculio nucum (L.)]’nda ilaç uygulama etkinliğinin iyileştirilmesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makinaları Anabilim Dalı, Ankara, Türkiye, ss: 130.
  • Duran H, Çilingir İ, Yurtlu Y B. 2013. Pülverizasyonda lazer ve leke yönteminde damla çap değerlerinin karşılaştırılması. 1. Bitki Koruma Ürünleri ve Makineleri Kongresi. 2-5 Nisan, Antalya, Türkiye, ss: 63.
  • Dursun E. 2000. Meme aşınmasının pülverizasyon karakteristiklerine etkileri. Ekin Yayıncılık, Ankara, Türkiye, ss: 43.
  • Fox R. D, Derksen R. C, Krause C. R, Cooper J.A, Ozkan H. E. 2001. Visual and image system measurement of spray deposits using water sensitive paper. http://www.nal.usda.gov/ttic/tektran/data/000012/62/0000126219.html. (accessed date: November 10, 2001).
  • Fox R D, Derksen R C, Cooper J A, Krause C R, Ozkan H E. 2003. Visual and image system measurement of spray deposits using water-sensitive paper. Applied Engin Agri, 19(5): 549-552.
  • Guler H, Zhu H, Ozkan H. E, Derksen R. C, Yu Y, Krause C. R. 2006. Spray characteristics and wind tunnel evaluation of drift reduction potential with air induction and conventional flat fan nozzle. 2006 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, 9-12 July 2006, Portland, Oregon, USA, pp: 27.
  • Hofman V. 1999. Spray droplet size relates to coverage and drift. http://www.ext.nodak.edu/extnews/newsrelease/1999/052799/08agspra.html. accessed date: August 22, 2020).
  • Jeon H Y, Zhu H, Derksen R C, Ozkan H E, Krause C R, Fox R D. 2011. Performance evaluation of a newly developed variable-rate sprayer for nursery liner applications. American Soc Agri Biol Engin, 54(6): 1997-2007.
  • Klotchkov A, Markevich, A, Straksiene J. 998. Field tecnologies and enviroment. Proceeding of the International Conference, 24-25 September, Raudondvaris, Lithuania, pp: 81-85.
  • Lardoux Y, Sinfort C, Bonicelli B, Enfalt P. 1998. Graund spray coverage study under a field sprayer boom. Brighton Crop Protection Conference: Pest&Diseases 1998: Volume 1: Proceedings of an International Conference, 16-19 November, Brighton UK, pp: 315-316.
  • Li X, Chen L, Tang Q, Li L, Cheng W, Hu P, Zhang R. 2022. Characteristics on the spatial distribution of droplet size and velocity with difference adjuvant in nozzle spraying. Agronomy, 12(8): 1960.
  • Moor A de, Langenakens L, Vereecke E, Jacken P, Lootens P. 2000. Image analysis of water sensitive paper as a tool for the evaluation of spray distribution of orchard sprayers. Pesticide Application University of Surrey, Aspects of Applied Biology, No. 57, Guilford, UK, pp: 329-341.
  • Özyurt H B, Duran H, Çelen İ H. 2022. Determination of the application parameters of spraying drones for crop production in hazelnut orchards. J Tekirdag Agri Fac, 19(4): 819-828.
  • Pan X, Yang S, Gao Y, Wang Z, Zhai C, Qiu W. 2025. Evaluation of spray drift from an electric boom sprayer: Impact of Boom Height and Nozzle Type. Agronomy, 15(1): 160.
  • Pearson S, Reed T. 1993. Spray nozzle selection. World Agriculture, Hong Kong, China, pp: 49-50.
  • Salyani M, Heping Z, Roy D S, Naresh P. 2013. Assessment of spray distribution with water-sensitive paper. Agric Eng Int, 15(2): 101-111.
  • Turgut E. 2021. Farklı hava emişli meme tiplerinin bazı pülverizasyon karakteristiklerinin belirlenmesi. Yüksek Lisans Tezi Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makinaları ve Teknolojileri Mühendisliği Ana Bilim Dalı, Samsun, Türkiye, ss: 62.
  • Wang L, Zhang N, Slocombe J W, Thierstein G E, Kuhlman D K. 1995. Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Applied Engineering in Agriculture, 11(1): 51-55.
  • Yağcıoğlu A. 2016. Bitki koruma makineleri. Ege Üniversitesi Yayınları, İzmir, Türkiye, ss: 295.
  • Zhu H, Salyani M, Fox R D. 2011. A portable scanning system for evaluation of spray deposit distribution. Comput Elect Agri, 76(1): 38-43.

Determination of Some Spraying Characteristics of Different Air Induction Nozzles

Yıl 2025, Cilt: 8 Sayı: 2, 263 - 269
https://doi.org/10.47115/bsagriculture.1639335

Öz

Although there are alternative methods of struggle against diseases, pests and weeds in agricultural production, chemical control method is widely preferred. The ability of the pesticide to show sufficient effect on the target surfaces depends on the correct functioning of the nozzles. In plant protection applications, it is necessary to make the pesticide in the appropriate nozzle type, spraying height, spraying pressure, forward speed and norm values. This study was carried out to determine the surface coverage, droplet frequency and volume median diameter of different air induction nozzles at different spraying heights and spray pressures. In the study; four different nozzles, three with air induction (ID 90-03 C, IDK 120-03, AITX B 8003) and one with hollow cone nozzle (TR 80-03), were used. This study conducted in field conditions. Two different spray heights (50 cm, 70 cm) and three different spray pressures (2 bar, 4 bar, 6 bar) were applied. As a result of the applications, the volume median diameter, droplet frequency and surface coverage were examined. Water sensitive papers and Image Tool for Windows V3 image processing program were used to determine the volume median diameter and surface coverage. The excel program was used to calculate the droplet frequency values. According to the results of the research, the highest surface coverage rate was achieved with 37.29% at IDK 120-03 nozzle at 70 cm spraying height and 6 bar spray pressure. The lowest surface coverage was obtained with the TR 80-03 nozzle at a spray height of 70 cm and pressure of 6 bar with 9.33%. The largest volume median diameter was 547.01 µm in AITX B 8003 nozzle and 256.60 µm in the smallest volume median diameter TR 80-03 nozzle. The highest droplet frequency is 74 (pcs / cm2) at TR 80-03 nozzle with 50 cm spraying height and 2 bar spray pressure, while the lowest droplet frequency is 8 (pcs / cm2) at 50 cm spray height and 2 bar spray pressure at AITX B 8003 nozzle was obtained.

Etik Beyan

Ethics committee approval was not required for this study because there was no study on animals or humans.

Teşekkür

This article was prepared from the master's thesis study carried out in the Department of Agricultural Machinery and Technologies Engineering at Ondokuz Mayıs University.

Kaynakça

  • Açık N. 2018. Püskürtme memelerinin düşük dacimde yüzey kaplama ve damla dağılım düzgünlüğü açısından karşılaştırılması. Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye, ss: 71.
  • Anonymous. 2020. Food and agriculture organization of the united nations (FAO). http://www.fao.org/site (accessed date: December 29, 2020).
  • Anonymous. 2024a. https://imagetool.software.informer.com/ (accessed date: December 10, 2024).
  • Anonymous. 2024b. https://www.syngenta.com.au/awri. (accessed date: December 1, 2024).
  • ASABE. 2009. ASABE Standard 572.1: Spray nozzle classification by droplet spectra. American Society of Agricultural and Biological Engineers, St. Joseph, MI, Miami, USA.
  • Balsari P, Gil E, Marucco P, van de Zande J C, Nuyttens D, Herbst A, Gallart M. 2017. Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type. Biosystem Engin, 154: 3-13.
  • Caner Ö. 2007. Yardımcı hava akımlı hidrolik pülverizatörle bağ ilaçlamasında toprak yüzeyine sürüklenmeyi azaltmaya yönelik en uygun kullanım koşullarının belirlenmesi. Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye, ss: 216
  • Çelen İ. H. 1998. Yelpaze hüzmeli püskürtme memelerinde aşınmanın pülverizasyon karakteristiklerine etkisi üzerine bir arastırma. Doktora Tezi, Tekirdağ Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, Türkiye, ss: 105 s.
  • Çelen I. H. Aktas T. 2000. The effect of drop size on drift. EurAgEng 2000, Paper No: 00-PM-052, Warwick, U.K.
  • Çelen İ. H. 2013. Tarımsal mücadelede püskürtme memeleri. Toprak Ofset, Tekirdağ, Türkiye, ss: 111.
  • Chiu H W, Lee F F, Liang L S. 1999. Using image processing technique to measure spray coverage. J Agri Res China, 48(4): 96-110.
  • Çilingir İ, Dursun E. 2010. Bitki koruma makinaları. Ankara Üniversitesi Ziraat Fakültesi Yayınları. Yayın No:1531, Ankara, Türkiye, ss: 56.
  • Çomaklı, M. 2017. Poliasetal (pom) meme plakalarında püskürtme açısına etki eden faktörler ve pülverizasyon karakteristikleri. Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makineleri Anabilim Dalı, Erzurum, Türkiye, ss: 78.
  • Dafsari R. A, Yu S, Choi Y, Lee J. 2021. Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engin, 209: 14-29.
  • Dou H, Wang S, Zhai C, Chen L, Wang X, Zhao X. 2021. A lidar sensor-based spray boom height detection method and the corresponding experimental validation. Sensors, 21(6): 2107.
  • Duran H. 2012. Fındık kurdu [Curculio nucum (L.)]’nda ilaç uygulama etkinliğinin iyileştirilmesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makinaları Anabilim Dalı, Ankara, Türkiye, ss: 130.
  • Duran H, Çilingir İ, Yurtlu Y B. 2013. Pülverizasyonda lazer ve leke yönteminde damla çap değerlerinin karşılaştırılması. 1. Bitki Koruma Ürünleri ve Makineleri Kongresi. 2-5 Nisan, Antalya, Türkiye, ss: 63.
  • Dursun E. 2000. Meme aşınmasının pülverizasyon karakteristiklerine etkileri. Ekin Yayıncılık, Ankara, Türkiye, ss: 43.
  • Fox R. D, Derksen R. C, Krause C. R, Cooper J.A, Ozkan H. E. 2001. Visual and image system measurement of spray deposits using water sensitive paper. http://www.nal.usda.gov/ttic/tektran/data/000012/62/0000126219.html. (accessed date: November 10, 2001).
  • Fox R D, Derksen R C, Cooper J A, Krause C R, Ozkan H E. 2003. Visual and image system measurement of spray deposits using water-sensitive paper. Applied Engin Agri, 19(5): 549-552.
  • Guler H, Zhu H, Ozkan H. E, Derksen R. C, Yu Y, Krause C. R. 2006. Spray characteristics and wind tunnel evaluation of drift reduction potential with air induction and conventional flat fan nozzle. 2006 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, 9-12 July 2006, Portland, Oregon, USA, pp: 27.
  • Hofman V. 1999. Spray droplet size relates to coverage and drift. http://www.ext.nodak.edu/extnews/newsrelease/1999/052799/08agspra.html. accessed date: August 22, 2020).
  • Jeon H Y, Zhu H, Derksen R C, Ozkan H E, Krause C R, Fox R D. 2011. Performance evaluation of a newly developed variable-rate sprayer for nursery liner applications. American Soc Agri Biol Engin, 54(6): 1997-2007.
  • Klotchkov A, Markevich, A, Straksiene J. 998. Field tecnologies and enviroment. Proceeding of the International Conference, 24-25 September, Raudondvaris, Lithuania, pp: 81-85.
  • Lardoux Y, Sinfort C, Bonicelli B, Enfalt P. 1998. Graund spray coverage study under a field sprayer boom. Brighton Crop Protection Conference: Pest&Diseases 1998: Volume 1: Proceedings of an International Conference, 16-19 November, Brighton UK, pp: 315-316.
  • Li X, Chen L, Tang Q, Li L, Cheng W, Hu P, Zhang R. 2022. Characteristics on the spatial distribution of droplet size and velocity with difference adjuvant in nozzle spraying. Agronomy, 12(8): 1960.
  • Moor A de, Langenakens L, Vereecke E, Jacken P, Lootens P. 2000. Image analysis of water sensitive paper as a tool for the evaluation of spray distribution of orchard sprayers. Pesticide Application University of Surrey, Aspects of Applied Biology, No. 57, Guilford, UK, pp: 329-341.
  • Özyurt H B, Duran H, Çelen İ H. 2022. Determination of the application parameters of spraying drones for crop production in hazelnut orchards. J Tekirdag Agri Fac, 19(4): 819-828.
  • Pan X, Yang S, Gao Y, Wang Z, Zhai C, Qiu W. 2025. Evaluation of spray drift from an electric boom sprayer: Impact of Boom Height and Nozzle Type. Agronomy, 15(1): 160.
  • Pearson S, Reed T. 1993. Spray nozzle selection. World Agriculture, Hong Kong, China, pp: 49-50.
  • Salyani M, Heping Z, Roy D S, Naresh P. 2013. Assessment of spray distribution with water-sensitive paper. Agric Eng Int, 15(2): 101-111.
  • Turgut E. 2021. Farklı hava emişli meme tiplerinin bazı pülverizasyon karakteristiklerinin belirlenmesi. Yüksek Lisans Tezi Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Tarım Makinaları ve Teknolojileri Mühendisliği Ana Bilim Dalı, Samsun, Türkiye, ss: 62.
  • Wang L, Zhang N, Slocombe J W, Thierstein G E, Kuhlman D K. 1995. Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Applied Engineering in Agriculture, 11(1): 51-55.
  • Yağcıoğlu A. 2016. Bitki koruma makineleri. Ege Üniversitesi Yayınları, İzmir, Türkiye, ss: 295.
  • Zhu H, Salyani M, Fox R D. 2011. A portable scanning system for evaluation of spray deposit distribution. Comput Elect Agri, 76(1): 38-43.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Makineleri
Bölüm Research Articles
Yazarlar

Ercan Turgut 0000-0001-6259-1908

Hüseyin Duran 0000-0002-2740-8941

Yayımlanma Tarihi
Gönderilme Tarihi 14 Şubat 2025
Kabul Tarihi 3 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Turgut, E., & Duran, H. (t.y.). Determination of Some Spraying Characteristics of Different Air Induction Nozzles. Black Sea Journal of Agriculture, 8(2), 263-269. https://doi.org/10.47115/bsagriculture.1639335

                                                  24890