Derleme
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 5 Sayı: 2, 112 - 117, 28.12.2018

Öz

Kaynakça

  • [1] Yalçın Duygu, D., “Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) suşlarının kesikli kültür sisteminde yığın kültürlerinin üretimi üzerine bir çalışma”, LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research, vol. 3(2), ss: 61-67, 2017.
  • [2] Aktar, S. ve Elgin Cebe, G., “Alglerin genel özellikleri, kullanım alanları ve eczacılıktaki önemi”, Ankara Ecz. Fak. Derg., vol. 39(3), ss: 237-264, 2010.
  • [3] Hattab, M. and Ghaly, A., “Effects of Light exposure and nitrogen source on the production of oil from freshwater and marine water microalgae”, American Journal of Biochemistry and Biotechnology, vol. 10(4), pp:208-230, 2014.
  • [4] Lowrey, J., Brooks, M.S. and McGinn, P.J., “Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review”, J. Appl. Phycol., vol. 27, pp:1485-1498, 2015.
  • [5] Bleeke, F., Rwehumbiza, V.M., Winckelmann, D. and Klöck, G., “Isolation and characterization of new temperature tolerant microalgal strains for biomass production”, Energies, vol.7, pp:7847-7856, 2014.
  • [6] Cirik, Ş. ve Cirik, S., Su bitkileri I-Deniz Bitkilerinin Biyolojisi, Ekolojisi ve Yetiştirme Teknikleri, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, Bornova, İzmir, 58, ss.135-145, 2011.
  • [7] Varshney, P., Mikulic, P., Vonshak, A., Beardall, J. and Wangikar, P.P., “Extremophilic micro-algae and their potential contribution in biotechnology”, Bioresour. Technol., vol.184, pp:363-372, 2015.
  • [8] Velichkova, K., Sirakov, I. and Georgiev G., “Cultivation of Botryococcus braunii strain in relation of its use for biodiesel production”, J Bio Sci Biotech, pp:157-162, 2012.
  • [9] Lorenz, R.T. and Cysewski, G.R., “Commercial potential for Haematococcus microalgae as a natural source of astaxanthin”, Tibtech, vol. 18, pp:160-167, 2000.[10] Sirakov, I., Velichkova, K., Stoyanova, S. and Staykov, Y., “The importance microalgae for aquaculture industry. Review”, International Journal of Fisheries and Aquatic Studies, vol. 2(4), pp: 81-84, 2015.
  • [11] Dash, A., Singh, A.P., Chaudhary, B.R., Singh, S.K. and Dash, D., “Effect of silver nanoparticles on growth of eukaryotic green algae”, Nano-Micro Lett., vol. 4(3), pp:158-165, 2012.
  • [12] López-Serrano, A., Olivas, R.M., Landaluze, J.S. and Cámara, C., “Nanoparticles: a global vision, characterization, separation, and quantification methods, potential environmental and health impact”, Analytical Methods, vol. 6(1), pp:38-56, 2014.
  • [13] Miazek, K., Iwanek, W., Remacle, C., Richel, A., and Goffin, D., “Effect of metals, metalloids and metallic nanoparticles on microalgae growth and ındustrial product biosynthesis: a review”, Int. J. Mol. Sci., vol.16, pp:23929-23969, 2015.
  • [14] Eroglu, E., Eggers, P.K., Winslade, M., Smith, S. M. and Raston, C.L., “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices”, Green Chemistry, vol.15(11), pp:3155–3159, 2013.
  • [15] Padrova, K., Lukavsky, J., Nedbalova, L., Cejkova, A., Cajthaml, T., Sigler, K., Vitova, M., and Rezanka, T. “Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae”, J. Appl. Phycol., vol. 27, pp:1443-1451, 2015.
  • [16] Beykaya, M., ve Çağlar, A., “Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma”, AKÜ FEMÜDİB, vol.16, ss: 631-641, 2016.
  • [17] Dobias, J., Nanoparticles and microorganisms: from synthesis to toxicity, Thèse, École Polytechnıque Fédérale De Lausanne, No 5614, Suisse, 2013.
  • [18] Ravichandran, R., “Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainities for global market”, Int J Green Nanotechnology, Physics and Chemistry, vol.1, pp: 72-96, 2010.
  • [19] Üçüncü Tunca, E., “Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu”, Ordu Üniv. Bil. Tek. Derg., vol.5(2), ss: 23-34, 2015. [20] Simonin, M. and Richaume, A., “Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review”, Environmental Science and Pollution Research, vol.22(18) pp: 13710-13723, 2015.
  • [21] Schrofel, A., Kratosova, G., Safarik, I., Safarikova, M., Raska, I., and Shor, L.M., “Applications of biosynthesized metallic nanoparticles-A review”, Acta Biomater., vol.10, pp: 4023-4042, 2014.
  • [22] Khan, I. Saeed, K., Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, pp:1-24, 2017.
  • [23] Machado, S., Pinto, S. L., Grosso, J. P., Albergaria, J. T., and Delerue-Matos, C., “Green production of zero-valent iron nanoparticles using tree leaf extracts”, The Science of the Total Environment, vol.1(2), pp:445-446, 2013.
  • [24] Kumar, A., Chisti, Y., and Banerjee, U., “Synthesis of metallic nanoparticles using plant extracts”, Biotechnology Advances, vol.31. pp: 346-356, 2013.
  • [25] Horikoshi, S., and Serpone, N., “Introduction to Nanoparticles” in Microwaves in Nanoparticle Synthesis, First Ed. Horikoshi, S., and Serpone, N., UK: Wiley Verlag, 2013.
  • [26] Ju-Nam, Y., and Lead, J.R., “Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications”, Sci. Total Environ. vol. 400, pp:396-414, 2008.
  • [27] Narayanan, K.B., and Sakthivel, N., “Biological synthesis of metal nanoparticles by microbes”, Adu, Colloid Interface Sci., vol.156, pp:1-13, 2010.
  • [28] Hulkoti, N.I., and Taranath, T.C., “Biosynthesis of nanoparticles using microbes-a review”, Colloids Surf. B Biointerfaces, vol. 121, pp:474-483, 2014.
  • [29] Duncan, T.V., “Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors”, J Colloid Interface Sci, vol.363(1), pp: 1-24, 2011.
  • [30] Sharma, V.K., Yngard, R.A., and Lin, Y. “Silver nanoparticles: green synthesis and their antimicrobial activities”, Adv. Colloid Interface Sci., vol.145, pp: 83-96, 2009.
  • [31] Logeswari, P., Silambarasan, S., and Abraham, J., “Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property”, J. Saudi Chem. Soc., vol.19, pp: 311-317, 2015.
  • [32] Sastry, M.., Ahmad, A., Khan, M.I., and Kumar, R., “Biosynthesis of metal nanoparticles using fungi and actinomycete”, Curr. Sci., vol.85, pp: 162-170, 2003.
  • [33] Patel, V., Berthold, D., Puranik, P., and Gantarb, M., “Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity”, Biotechnology Reports, vol.5, pp: 112-119, 2015.
  • [34] Blaby-Haas, C.E., and Merchant, S.S., “The ins and outs of algal metal transport”, Biochim. Biophys. Acta, vol.1823, pp: 1531–1552, 2012.
  • [35] He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., and Wang, C., “Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles”, Scientific REPORTS, vol.7, pp:1-12, 2017.
  • [36] He, D., Dorantes-Aranda, J.J., and Waite, T.D., “Silver nanoparticle-algae interactions: Oxidative dissolution, reactive oxygen species generation and synergistic toxic effects”, Environmental Science & Technology., vol.46(16), pp:8731-8738, 2012.
  • [37] Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., and Odzak, N., “Toxicity of silver nanoparticles to Chlamydomonas reinhardtii”, Environ. Sci. Technol., vol.42(23), pp: 8959-8964, 2008.
  • [38] Mittal, A., Chisti, Y., and Banerjee, U., “Synthesis of metallic nanoparticles using plant extracts”, Biotechnol Adv., vol.31, pp: 346-356, 2013. [39] Huang, S.H., Chen, D.H., “Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent”, J Hazard Mater, vol.163(1) pp: 174-179, 2009.
  • [40] Davis, A.S., Prakash, P., and Thamaraiselvi, K., “Nanobioremediation Technologies for Sustainable Environment” in Bioremediation and Sustainable Technologies for Cleaner Environment, Ed. Prashanthi M. et al. Environmental Science and Engineering Springer Singapore: pp:13-33, 2017.
  • [41] Mahdieh, M., Zolanvari, A., Azimeea, A.S., and Mahdieh, M., “Green biosynthesis of silver nanoparticles by Spirulina platensis”, Scientia Iranica F, vol 19(3), pp:926-929, 2012.
  • [42] Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., and Shanehbandi, D., “Potential of microalgae and Lactobacilli in biosynthesis of silver nanoparticles”, BioImpacts, vol.1(3), pp: 149-152, 2011.
  • [43] Brayner, R., Barberousse, H., Hernadi, M., Djedjat, C., Yepremian, C., and Coradin, T., “Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route”, J. Nanosci. Nanotechnol., vol.7, pp: 2696-2708, 2007.
  • [44] Parial, D., Patra, H.K., Roychoudhury, P., Dasgupta, A.K., and Pal, R., “Gold nanorod production by cyanobacteria - a green chemistry approach”, J. Appl. Phycol., vol.24, pp: 55-60, 2012.
  • [45] Luangpipat, T., Beattie, I.R., Chisti, Y., and Haverkamp, R.G., “Gold nanoparticles produced in a microalga”, J. Nanopart. Res., vol.13, pp: 6439-6445, 2011.
  • [46] Furno, F., Morley, K.S., Wong, B., Sharp, B.L., Arnold, P.L., Howdle, S.M., and Bayston, R., “Silver nanoparticles and polymericmedical devices: a new approach to prevention of infection”, J. Antimicrob. Chemother., vol.54, pp:1019-1024, 2004.
  • [47] Ahmadi, F.S., Tanhaeian, A., and Pirkohi, M.H., “Biosynthesis of silver nanoparticles using Chlamydomonas reinhardtii and its inhibitory effect on growth and virulence of Listeria monocytogenes”, Iran J Biotech., vol.14(3), pp:163-168, 2016.
  • [48] Sibi, G., Ananda Kumar, D., Gopal, T., Harinath, K., Banupriya, S., and Chaitra, S., “Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris”, Int J Sci Res Environ Sci Toxicol, vol.2(1), pp:1-8, 2017.

Metal Nanopartiküllerin Mikroalgler Üzerine Olan Etkileri ve Uygulamaları

Yıl 2018, Cilt: 5 Sayı: 2, 112 - 117, 28.12.2018

Öz

Bu derlemede, metal nanopartiküllerin (NP) sentezi,
özellikleri ve mikroalglerle olan etkileşimleri ile uygulamaları hakkında genel
bir bakış sunulmaktadır. NP'ler, 1 ila 100 nm arasında değişen büyüklükteki
maddelerdir. Özellikleri, şekilleri veya büyüklüklerine göre farklı sınıflara
ayrılabilirler. Bu özellikleri nedeniyle, kataliz, görüntüleme, tıbbi
uygulamalar, enerji tabanlı ve çevresel uygulamaları içeren çeşitli ticari
uygulamalar için uygun adaylardır. Biyonanoteknoloji ile biyolojik sistemler
kullanılarak nanomateryal sentezi gerçekleştirilmektedir.
Bu tür biyolojik
sistemler arasında mikroalgler, metal iyonlarını almak ve detoksifikasyon
süreci ile nanopartiküller üretmek için çok büyük bir potansiyele sahiptir.

Kaynakça

  • [1] Yalçın Duygu, D., “Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) suşlarının kesikli kültür sisteminde yığın kültürlerinin üretimi üzerine bir çalışma”, LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research, vol. 3(2), ss: 61-67, 2017.
  • [2] Aktar, S. ve Elgin Cebe, G., “Alglerin genel özellikleri, kullanım alanları ve eczacılıktaki önemi”, Ankara Ecz. Fak. Derg., vol. 39(3), ss: 237-264, 2010.
  • [3] Hattab, M. and Ghaly, A., “Effects of Light exposure and nitrogen source on the production of oil from freshwater and marine water microalgae”, American Journal of Biochemistry and Biotechnology, vol. 10(4), pp:208-230, 2014.
  • [4] Lowrey, J., Brooks, M.S. and McGinn, P.J., “Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review”, J. Appl. Phycol., vol. 27, pp:1485-1498, 2015.
  • [5] Bleeke, F., Rwehumbiza, V.M., Winckelmann, D. and Klöck, G., “Isolation and characterization of new temperature tolerant microalgal strains for biomass production”, Energies, vol.7, pp:7847-7856, 2014.
  • [6] Cirik, Ş. ve Cirik, S., Su bitkileri I-Deniz Bitkilerinin Biyolojisi, Ekolojisi ve Yetiştirme Teknikleri, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, Bornova, İzmir, 58, ss.135-145, 2011.
  • [7] Varshney, P., Mikulic, P., Vonshak, A., Beardall, J. and Wangikar, P.P., “Extremophilic micro-algae and their potential contribution in biotechnology”, Bioresour. Technol., vol.184, pp:363-372, 2015.
  • [8] Velichkova, K., Sirakov, I. and Georgiev G., “Cultivation of Botryococcus braunii strain in relation of its use for biodiesel production”, J Bio Sci Biotech, pp:157-162, 2012.
  • [9] Lorenz, R.T. and Cysewski, G.R., “Commercial potential for Haematococcus microalgae as a natural source of astaxanthin”, Tibtech, vol. 18, pp:160-167, 2000.[10] Sirakov, I., Velichkova, K., Stoyanova, S. and Staykov, Y., “The importance microalgae for aquaculture industry. Review”, International Journal of Fisheries and Aquatic Studies, vol. 2(4), pp: 81-84, 2015.
  • [11] Dash, A., Singh, A.P., Chaudhary, B.R., Singh, S.K. and Dash, D., “Effect of silver nanoparticles on growth of eukaryotic green algae”, Nano-Micro Lett., vol. 4(3), pp:158-165, 2012.
  • [12] López-Serrano, A., Olivas, R.M., Landaluze, J.S. and Cámara, C., “Nanoparticles: a global vision, characterization, separation, and quantification methods, potential environmental and health impact”, Analytical Methods, vol. 6(1), pp:38-56, 2014.
  • [13] Miazek, K., Iwanek, W., Remacle, C., Richel, A., and Goffin, D., “Effect of metals, metalloids and metallic nanoparticles on microalgae growth and ındustrial product biosynthesis: a review”, Int. J. Mol. Sci., vol.16, pp:23929-23969, 2015.
  • [14] Eroglu, E., Eggers, P.K., Winslade, M., Smith, S. M. and Raston, C.L., “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices”, Green Chemistry, vol.15(11), pp:3155–3159, 2013.
  • [15] Padrova, K., Lukavsky, J., Nedbalova, L., Cejkova, A., Cajthaml, T., Sigler, K., Vitova, M., and Rezanka, T. “Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae”, J. Appl. Phycol., vol. 27, pp:1443-1451, 2015.
  • [16] Beykaya, M., ve Çağlar, A., “Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma”, AKÜ FEMÜDİB, vol.16, ss: 631-641, 2016.
  • [17] Dobias, J., Nanoparticles and microorganisms: from synthesis to toxicity, Thèse, École Polytechnıque Fédérale De Lausanne, No 5614, Suisse, 2013.
  • [18] Ravichandran, R., “Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainities for global market”, Int J Green Nanotechnology, Physics and Chemistry, vol.1, pp: 72-96, 2010.
  • [19] Üçüncü Tunca, E., “Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu”, Ordu Üniv. Bil. Tek. Derg., vol.5(2), ss: 23-34, 2015. [20] Simonin, M. and Richaume, A., “Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review”, Environmental Science and Pollution Research, vol.22(18) pp: 13710-13723, 2015.
  • [21] Schrofel, A., Kratosova, G., Safarik, I., Safarikova, M., Raska, I., and Shor, L.M., “Applications of biosynthesized metallic nanoparticles-A review”, Acta Biomater., vol.10, pp: 4023-4042, 2014.
  • [22] Khan, I. Saeed, K., Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, pp:1-24, 2017.
  • [23] Machado, S., Pinto, S. L., Grosso, J. P., Albergaria, J. T., and Delerue-Matos, C., “Green production of zero-valent iron nanoparticles using tree leaf extracts”, The Science of the Total Environment, vol.1(2), pp:445-446, 2013.
  • [24] Kumar, A., Chisti, Y., and Banerjee, U., “Synthesis of metallic nanoparticles using plant extracts”, Biotechnology Advances, vol.31. pp: 346-356, 2013.
  • [25] Horikoshi, S., and Serpone, N., “Introduction to Nanoparticles” in Microwaves in Nanoparticle Synthesis, First Ed. Horikoshi, S., and Serpone, N., UK: Wiley Verlag, 2013.
  • [26] Ju-Nam, Y., and Lead, J.R., “Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications”, Sci. Total Environ. vol. 400, pp:396-414, 2008.
  • [27] Narayanan, K.B., and Sakthivel, N., “Biological synthesis of metal nanoparticles by microbes”, Adu, Colloid Interface Sci., vol.156, pp:1-13, 2010.
  • [28] Hulkoti, N.I., and Taranath, T.C., “Biosynthesis of nanoparticles using microbes-a review”, Colloids Surf. B Biointerfaces, vol. 121, pp:474-483, 2014.
  • [29] Duncan, T.V., “Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors”, J Colloid Interface Sci, vol.363(1), pp: 1-24, 2011.
  • [30] Sharma, V.K., Yngard, R.A., and Lin, Y. “Silver nanoparticles: green synthesis and their antimicrobial activities”, Adv. Colloid Interface Sci., vol.145, pp: 83-96, 2009.
  • [31] Logeswari, P., Silambarasan, S., and Abraham, J., “Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property”, J. Saudi Chem. Soc., vol.19, pp: 311-317, 2015.
  • [32] Sastry, M.., Ahmad, A., Khan, M.I., and Kumar, R., “Biosynthesis of metal nanoparticles using fungi and actinomycete”, Curr. Sci., vol.85, pp: 162-170, 2003.
  • [33] Patel, V., Berthold, D., Puranik, P., and Gantarb, M., “Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity”, Biotechnology Reports, vol.5, pp: 112-119, 2015.
  • [34] Blaby-Haas, C.E., and Merchant, S.S., “The ins and outs of algal metal transport”, Biochim. Biophys. Acta, vol.1823, pp: 1531–1552, 2012.
  • [35] He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., and Wang, C., “Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles”, Scientific REPORTS, vol.7, pp:1-12, 2017.
  • [36] He, D., Dorantes-Aranda, J.J., and Waite, T.D., “Silver nanoparticle-algae interactions: Oxidative dissolution, reactive oxygen species generation and synergistic toxic effects”, Environmental Science & Technology., vol.46(16), pp:8731-8738, 2012.
  • [37] Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., and Odzak, N., “Toxicity of silver nanoparticles to Chlamydomonas reinhardtii”, Environ. Sci. Technol., vol.42(23), pp: 8959-8964, 2008.
  • [38] Mittal, A., Chisti, Y., and Banerjee, U., “Synthesis of metallic nanoparticles using plant extracts”, Biotechnol Adv., vol.31, pp: 346-356, 2013. [39] Huang, S.H., Chen, D.H., “Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent”, J Hazard Mater, vol.163(1) pp: 174-179, 2009.
  • [40] Davis, A.S., Prakash, P., and Thamaraiselvi, K., “Nanobioremediation Technologies for Sustainable Environment” in Bioremediation and Sustainable Technologies for Cleaner Environment, Ed. Prashanthi M. et al. Environmental Science and Engineering Springer Singapore: pp:13-33, 2017.
  • [41] Mahdieh, M., Zolanvari, A., Azimeea, A.S., and Mahdieh, M., “Green biosynthesis of silver nanoparticles by Spirulina platensis”, Scientia Iranica F, vol 19(3), pp:926-929, 2012.
  • [42] Mohseniazar, M., Barin, M., Zarredar, H., Alizadeh, S., and Shanehbandi, D., “Potential of microalgae and Lactobacilli in biosynthesis of silver nanoparticles”, BioImpacts, vol.1(3), pp: 149-152, 2011.
  • [43] Brayner, R., Barberousse, H., Hernadi, M., Djedjat, C., Yepremian, C., and Coradin, T., “Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route”, J. Nanosci. Nanotechnol., vol.7, pp: 2696-2708, 2007.
  • [44] Parial, D., Patra, H.K., Roychoudhury, P., Dasgupta, A.K., and Pal, R., “Gold nanorod production by cyanobacteria - a green chemistry approach”, J. Appl. Phycol., vol.24, pp: 55-60, 2012.
  • [45] Luangpipat, T., Beattie, I.R., Chisti, Y., and Haverkamp, R.G., “Gold nanoparticles produced in a microalga”, J. Nanopart. Res., vol.13, pp: 6439-6445, 2011.
  • [46] Furno, F., Morley, K.S., Wong, B., Sharp, B.L., Arnold, P.L., Howdle, S.M., and Bayston, R., “Silver nanoparticles and polymericmedical devices: a new approach to prevention of infection”, J. Antimicrob. Chemother., vol.54, pp:1019-1024, 2004.
  • [47] Ahmadi, F.S., Tanhaeian, A., and Pirkohi, M.H., “Biosynthesis of silver nanoparticles using Chlamydomonas reinhardtii and its inhibitory effect on growth and virulence of Listeria monocytogenes”, Iran J Biotech., vol.14(3), pp:163-168, 2016.
  • [48] Sibi, G., Ananda Kumar, D., Gopal, T., Harinath, K., Banupriya, S., and Chaitra, S., “Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris”, Int J Sci Res Environ Sci Toxicol, vol.2(1), pp:1-8, 2017.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Dilek Yalçın Duygu

Yayımlanma Tarihi 28 Aralık 2018
Gönderilme Tarihi 23 Mayıs 2018
Kabul Tarihi 19 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 2

Kaynak Göster

APA Yalçın Duygu, D. (2018). Metal Nanopartiküllerin Mikroalgler Üzerine Olan Etkileri ve Uygulamaları. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 5(2), 112-117.