Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 6 Sayı: 2, 521 - 529, 26.12.2019
https://doi.org/10.35193/bseufbd.576732

Öz


Kaynakça

  • [1] Nussbaumer, H. J. (1981). Pseudo QMF filter bank., IBM Tech. Disclosure Bulletin., 24, 3081-3087.
  • [2] Rothweiler, J. H. (1983). Polyphase Quadrature Filters, a New Subband Coding Technique. Proceedings of the IEEE International Conference on ASSP, 1983, Boston MA, 1980-1983.
  • [3] Chu, P.L. (1985). Quadrature Mirror Filter Design for an Arbitrary Number of Equal Bandwidth Channels. IEEE Transactions on Acoustics, Speech and Signal Processing., vol. ASSP-33, 203-218.
  • [4] Masson, J. & Picel, Z. (1985). Flexible Design of Computationally Efficient Nearly Perfect QMF Filter Banks.Proceedings of the IEEE International Conference on ASSP, 1985, Tampa FL, 14.7.1-14.7.4.
  • [5] Cox, R. V. (1986). The Design of Uniformly and Nonuniformly Spaced Pseudo QMF. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1090-1096.
  • [6] Ramstadt, T. A. (1984). Analysis/Synthesis Filter Banks with Critical Sampling. International Conference on Digital Signal Processing. 1984. Florence.
  • [7] Smith, M. J. T. & Barnwell, III, T. P. (1985). A Unifying Framework for Analysis/Synthesis Systems Based on Maximally Decimated Filter Banks, Proceedings of the IEEE International Conference on ASSP, Tampa FL, 521-524
  • [8] Vetterli, M. (1985). Splitting a Signal into Subsampled Channels Allowing Perfect Reconstruction, Proc. IASTED Conf. Appl. Signal Proc., 1985, Paris.
  • [9] Princen, J. P. & Bradley, A. P. (1986).Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1153-1161.
  • [10] Wackershruther, G. (1986). Some New Aspects of Filters for Filter Banks. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1182-1200.
  • [11] Vaidyanathan P. P. (1987). Theory and Design of M-Channel Maximally Decimated Quadrature Mirror with Arbitrary M, Having Perfect Reconstruction Property. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-35, 476-492.
  • [12] Vaidyanathan P. P. (1987). Quadrature Mirror Filter Banks, M-Band Extensions and Perfect Reconstruction Techniques. IEEE ASSP magazine, vol 4, 4-20.
  • [13] Nguyen T. Q. &Vaidyanathan P. P. (1988).Two Channel Perfect Reconstruction FIR QMF Structures which Yield Linear Phase FIR Analysis and Synthesis Filters. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-38, 676-690.
  • [14] Viscito & Allebach (1988). The Desing of Tree Structured M-channel filter banks using Perfect Reconstruction Filter Blocks. Proceedings of the IEEE International Conference on ASSP, New York, 1475-1478.
  • [15] Sweldens, W. (1996) The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis, 3(2), 186-200.
  • [16] Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29(2), 511-546.
  • [17] Daubechies I. & Sweldens W. (1998). Factoring wavelet transforms into lifting steps, Journal of Fourier Analysis and Applications, 4(3), 247-269.
  • [18] Gerek, Ö. N. & Cetin, A. E. (2000). Adaptive polyphase subband decomposition structures for image compression. IEEE Transactions on Image Processing, 9(10), 1649-1660.
  • [19] Gerek, Ö. N. & Cetin, A. E. (2006). A 2-D orientation- adaptive prediction filter in lifting structures for image coding. IEEE Transactions on Image Processing, 15(1), 106-111.
  • [20] Habiboglu Y. H., Kose K., & Cetin A. E. (2011) Fractional wavelet transform using an unbalanced lifting structure, Proc. SPIE 8058, Indepen- dent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, 805805.
  • [21] Keskin F. & A. E. Cetin A. E. (2011). Directionally selective fractional wavelet transform using a 2-D non-separable unbalanced lifting structure. In: E. Salerno, A. E. Cetin, O. Salvetti (eds) Computational Intelligence for Multimedia Understanding. MUSCLE 2011. Lecture Notes in Computer Science, vol 7252. Springer, Berlin, Heidelberg
  • [22] Kale, M. C., Atac, G., & Gerek, Ö. N. (2016), A Biorthogonal Wavelet Design Technique using Karhunen-Loeve Transform Approximation, Digital Signal Processing, 51(4), 202-222.
  • [23] Kale M. C. (2016). A general biorthogonal wavelet based on Karhunen-Loeve transform approximation, Signal, Image and Video Processing, 10(4), 791-794.
  • [24] Tran T. D., de Queiroz R. L. & Nguyen T. Q. (2000). Linear-phase perfect reconstruction filter bank: lattice structure, design, and application in image coding, IEEE Transactions on Signal Processing, 48(1), 133-147.
  • [25] Vaidyanathan P. P. (1993). Multirate Systems and Filter Banks, Prentice Hall.

Kaldırma Düzeninde Kafes Uygulaması

Yıl 2019, Cilt: 6 Sayı: 2, 521 - 529, 26.12.2019
https://doi.org/10.35193/bseufbd.576732

Öz

Dörtlü ayna filtre bankalarında altbant, kaldırma ve altbandın bir parçası olarak kafes düzenleri kullanılmaktadır. Bunların içinden kaldırma düzeni, aritmetik işlem sayısını yarı yarıya indirdiği için daha avantajlıdır. Ancak, kafes tekniği kaldırma düzeninde kullanılmamaktadır. Bu makalede anlatılan araştırmada, dörtlü ayna filtre bankaları için kaldırma düzeninde kafes uygulaması geliştirilmiştir. Mükemmel geri oluşturulma için tüm koşullar ele alınmış ve detaylıca açıklanmıştır.000

Kaynakça

  • [1] Nussbaumer, H. J. (1981). Pseudo QMF filter bank., IBM Tech. Disclosure Bulletin., 24, 3081-3087.
  • [2] Rothweiler, J. H. (1983). Polyphase Quadrature Filters, a New Subband Coding Technique. Proceedings of the IEEE International Conference on ASSP, 1983, Boston MA, 1980-1983.
  • [3] Chu, P.L. (1985). Quadrature Mirror Filter Design for an Arbitrary Number of Equal Bandwidth Channels. IEEE Transactions on Acoustics, Speech and Signal Processing., vol. ASSP-33, 203-218.
  • [4] Masson, J. & Picel, Z. (1985). Flexible Design of Computationally Efficient Nearly Perfect QMF Filter Banks.Proceedings of the IEEE International Conference on ASSP, 1985, Tampa FL, 14.7.1-14.7.4.
  • [5] Cox, R. V. (1986). The Design of Uniformly and Nonuniformly Spaced Pseudo QMF. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1090-1096.
  • [6] Ramstadt, T. A. (1984). Analysis/Synthesis Filter Banks with Critical Sampling. International Conference on Digital Signal Processing. 1984. Florence.
  • [7] Smith, M. J. T. & Barnwell, III, T. P. (1985). A Unifying Framework for Analysis/Synthesis Systems Based on Maximally Decimated Filter Banks, Proceedings of the IEEE International Conference on ASSP, Tampa FL, 521-524
  • [8] Vetterli, M. (1985). Splitting a Signal into Subsampled Channels Allowing Perfect Reconstruction, Proc. IASTED Conf. Appl. Signal Proc., 1985, Paris.
  • [9] Princen, J. P. & Bradley, A. P. (1986).Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1153-1161.
  • [10] Wackershruther, G. (1986). Some New Aspects of Filters for Filter Banks. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, 1182-1200.
  • [11] Vaidyanathan P. P. (1987). Theory and Design of M-Channel Maximally Decimated Quadrature Mirror with Arbitrary M, Having Perfect Reconstruction Property. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-35, 476-492.
  • [12] Vaidyanathan P. P. (1987). Quadrature Mirror Filter Banks, M-Band Extensions and Perfect Reconstruction Techniques. IEEE ASSP magazine, vol 4, 4-20.
  • [13] Nguyen T. Q. &Vaidyanathan P. P. (1988).Two Channel Perfect Reconstruction FIR QMF Structures which Yield Linear Phase FIR Analysis and Synthesis Filters. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-38, 676-690.
  • [14] Viscito & Allebach (1988). The Desing of Tree Structured M-channel filter banks using Perfect Reconstruction Filter Blocks. Proceedings of the IEEE International Conference on ASSP, New York, 1475-1478.
  • [15] Sweldens, W. (1996) The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis, 3(2), 186-200.
  • [16] Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29(2), 511-546.
  • [17] Daubechies I. & Sweldens W. (1998). Factoring wavelet transforms into lifting steps, Journal of Fourier Analysis and Applications, 4(3), 247-269.
  • [18] Gerek, Ö. N. & Cetin, A. E. (2000). Adaptive polyphase subband decomposition structures for image compression. IEEE Transactions on Image Processing, 9(10), 1649-1660.
  • [19] Gerek, Ö. N. & Cetin, A. E. (2006). A 2-D orientation- adaptive prediction filter in lifting structures for image coding. IEEE Transactions on Image Processing, 15(1), 106-111.
  • [20] Habiboglu Y. H., Kose K., & Cetin A. E. (2011) Fractional wavelet transform using an unbalanced lifting structure, Proc. SPIE 8058, Indepen- dent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, 805805.
  • [21] Keskin F. & A. E. Cetin A. E. (2011). Directionally selective fractional wavelet transform using a 2-D non-separable unbalanced lifting structure. In: E. Salerno, A. E. Cetin, O. Salvetti (eds) Computational Intelligence for Multimedia Understanding. MUSCLE 2011. Lecture Notes in Computer Science, vol 7252. Springer, Berlin, Heidelberg
  • [22] Kale, M. C., Atac, G., & Gerek, Ö. N. (2016), A Biorthogonal Wavelet Design Technique using Karhunen-Loeve Transform Approximation, Digital Signal Processing, 51(4), 202-222.
  • [23] Kale M. C. (2016). A general biorthogonal wavelet based on Karhunen-Loeve transform approximation, Signal, Image and Video Processing, 10(4), 791-794.
  • [24] Tran T. D., de Queiroz R. L. & Nguyen T. Q. (2000). Linear-phase perfect reconstruction filter bank: lattice structure, design, and application in image coding, IEEE Transactions on Signal Processing, 48(1), 133-147.
  • [25] Vaidyanathan P. P. (1993). Multirate Systems and Filter Banks, Prentice Hall.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Cemil Kale 0000-0003-4932-1713

Yayımlanma Tarihi 26 Aralık 2019
Gönderilme Tarihi 12 Haziran 2019
Kabul Tarihi 2 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kale, M. C. (2019). Kaldırma Düzeninde Kafes Uygulaması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 521-529. https://doi.org/10.35193/bseufbd.576732