Araştırma Makalesi
BibTex RIS Kaynak Göster

HAFİF RAYLI SİSTEM ARACINA HİBRİT BİR SİSTEM ENTEGRE EDİLMESİNİN SİSTEM PARAMETRELERİ ÜZERİNE ETKİLERİ

Yıl 2019, Cilt: 6 Sayı: 2, 278 - 297, 26.12.2019
https://doi.org/10.35193/bseufbd.638292

Öz

Bu çalışmanın amacı, hafif raylı
bir hibrit sistem aracında araç tarafından talep edilen akımın, yakıt hücresi
modülü çıkış geriliminin, anlık hidrojen tüketim miktarının, batarya çıkış
geriliminin ve batarya şarj durumunun zamanla değişimini incelemektir. Hibrit
sistem Proton Değişim Membranlı yakıt hücresi modülü ve Lityum-İyon batarya
modülünden oluşmaktadır. Bu amacı gerçekleştirmek için, Kayseri ilinde bulunan
hafif raylı sistem hattının sadece beş istasyonluk güzergahı pilot bölge olarak
seçilip iki ayrı durumun incelendiği hibrit sistemler tasarlandı. Durum 1,
raylı sistem aracının yakıt hücresi modülü ile tahrik edildiği, frenleme
esnasında çıkan rejeneratif akımın batarya modülünde depolandığı ve bu
depolanan enerjinin yardımcı sistemlerde kullanıldığı durumdur. Durum 2 ise
aracın Lityum-İyon batarya modülü ile tahrik edildiği ve yakıt hücresi
modülünün sadece batarya modülünü şarj etmek için kullanıldığı durumdur. Bu iki
durum için matematiksel modeller oluşturuldu ve bu modeller MATLAB/Simulink
programında kodlanarak çözümler gerçekleştirildi. Elde edilen sonuçlara göre,
Durum 2'nin Durum 1'e göre anlık talep edilen akıma hızlı cevap vermesi ve
hidrojen yakıtı tüketimi açısından daha tercih edilebilir olduğu görülmektedir.

Kaynakça

  • [1] Chen, Q., Gao, L., Dougal, R., & Quan, S. (2009). Multiple model predictive control for a hybrid proton exchange membrane fuel cell system. Journal of Power Sources, 191 (2), 473–482.
  • [2] Khaligh, A., Li, Z. (2010). Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Transactions on Vehicular Technology, 59, 6, 2806 - 2814.
  • [3] Bubna, P., Advani, S., Prasad, A. (2012). Integration of batteries with ultracapacitors for a fuel cell hybrid transit bus. Journal of Power Sources, 199, 360–366.
  • [4] Bauman, J., & Kazerani, M. (2009). An Analytical Optimization Method for Improved Fuel Cell–Battery–Ultracapacitor Powertrain. IEEE Transactions on Vehicular Technology, 58 (7), 3186 - 3197.
  • [5] Fernandez, L., Garcia, P., Garcia, C. A., Jurado, F. (2011). Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway. Energy Conversion and Management, 52 (5), 2183–2192.
  • [6] Bauman, J., Kazerani, M. (2008). An improved powertrain topology for fuel cell-battery-ultracapacitor vehicles. IEEE International Symposium on Industrial Electronics. Cambridge, UK: IEEE.
  • [7] Vural, B., Erdinc, O., Uzunoglu, M. (2010). Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface. Energy Conversion and Management, 51, (12), 2613–2622.
  • [8] Vural, B., Boynuegri, A., Nakir, I., Erdinc, O., Balikci, A., Uzunoglu, M.,. Dusmez, S. (2010). Fuel cell and ultra-capacitor hybridization: A prototype test bench based analysis of different energy management strategies for vehicular applications. International Journal of Hydrogen Energy, 35, 20, 11161–11171.
  • [9] Gao, W. (2005). Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain. IEEE Transactions on Vehicular Technology, 54 (3), 846 - 855.
  • [10] Kisacikoglu, M., Uzunoglu, M., Alam, M. (2009). Load sharing using fuzzy logic control in a fuel cell/ultracapacitor hybrid vehicle. International Journal of Hydrogen Energy, 34 (3), 1497–1507.
  • [11] Lia, Q., Chena, W., Lia, Y., & Liub, S. (2012). Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems, 43(1), 514–525.
  • [12] Lin, W.-S., Zheng, C.-H. (2011). Energy management of a fuel cell/ ultracapacitor hybrid power system using an adaptive optimal-control method. Journal of Power Sources, 196, (6), 3280–3289.
  • [13] Takizawa, K., Kondo, K. (2010). A designing method of the power source specifications for hybrid powered traction systems with fuel cells and EDLCs. International Conference on Electrical Machines and Systems. IEEE.
  • [14] Yoneyama, T., Yamamoto, T., Kondo, K. (2007). Fuel cell powered railway vehicle and experimental test results. European Conference on Power Electronics and Applications. Aalborg, Denmark: IEEE.
  • [15] Wang, Y.-X., Ou K., Kim Y.-B. (2017). Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system. Renewable Energy. 111, 381-391.
  • [16] Arista ,A.A., Agnello, G., Napoli, G., V. (2017). Antonucci Study and design of a hybrid electric vehicle (Lithium Batteries-PEM FC) International Journal of Hydrogen Energy. 42(5), 3166-3184.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülşah Elden 0000-0003-2756-8483

Abdurrahim Tanşu Bu kişi benim 0000-0002-2959-9892

Yayımlanma Tarihi 26 Aralık 2019
Gönderilme Tarihi 25 Ekim 2019
Kabul Tarihi 27 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

APA Elden, G., & Tanşu, A. (2019). HAFİF RAYLI SİSTEM ARACINA HİBRİT BİR SİSTEM ENTEGRE EDİLMESİNİN SİSTEM PARAMETRELERİ ÜZERİNE ETKİLERİ. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 278-297. https://doi.org/10.35193/bseufbd.638292