Düz Disklerdeki Bilardo Akışlarının Topolojik Geçişliliği
Yıl 2020,
Cilt: 7 Sayı: 100. Yıl Özel Sayı, 289 - 298, 23.03.2020
İsmail Sağlam
,
Ahmet Refah Torun
Öz
Sabit bir iç açı datasına sahip her
düz diskler ailesinin bilardo akışı topolojik geçişli olan yoğun bir Gδ
kümesi içerdiğini gösteriyoruz.
Kaynakça
- [1] Gutkin, E. (1996). Billiards in polygons: survey of recent results. Journal of statistical physics, 83(1), 7-26.
- [2] Gutkin, E. (2003). Billiard dynamics: a survey with the emphasis on open problems. Regular and chaotic dynamics, 8(1), 1-13.
- [3] Masur, H. (2006). Ergodic theory of translation surfaces. Handbook of dynamical systems 1B. Elsevier, 527-547.
- [4] Zorich, A. (2006). Frontiers in number theory, physics, and geometry I, APA, 439-585
- [5] Masur, H. & Tabachnikov, S. (2002). Rational billiards and flat structures. Handbook of dynamical systems 1A. Elsevier, 1015-1089.
- [6] Sağlam, İ. (2016). Flat Surfaces with Finite Holonomy Group. arXiv preprint arXiv:1612.07169.
- [7] Zemlyakov, A. N., & Katok, A. B. (1975). Topological transitivity of billiards in polygons. Mathematical Notes of the Academy of Sciences of the USSR, 18(2), 760-764.
- [8] Troyanov, M. (2007). On the Moduli Space of Singular Euclidean Surfaces. Handbook of Teichmüller Theory 1, AMS, 507–540.
- [9] Troyanov, M. (1986). Les surfaces euclidienne à singularités coniques. L’Enseignement Math. EMS, 79–94.
- [10] Troyanov, M. (1991). Prescribing curvature on compact surfaces with conical singularities. Transactions of the American Mathematical Society, 324(2), 793-821.
- [11] Hulin, D.,& Troyanov, M. (1992). Prescribing curvature on open surfaces. Mathematische Annalen, 293(1), 277-315.
- [12] Sağlam, İ. (2016). Complete Flat Cone Metrics on Surfaces. arXiv preprint arXiv:1602.04240.