Araştırma Makalesi
BibTex RIS Kaynak Göster

Foliar N and P Resorption in Invasive Ailanthus altissima (Mill.) Swingle (Simaroubaceae) Species

Yıl 2020, Cilt: 7 Sayı: 100. Yıl Özel Sayı, 35 - 50, 23.03.2020
https://doi.org/10.35193/bseufbd.641833

Öz

In this study, leaf N and P resorption levels of invasive Ailanthus altissima (Mill.) Swingle
species were investigated during the development season. Resorption is the
mechanism by which nutrients are transported back to perennial tissues. This
mechanism is an important part of the nutrient cycling in trees and shrubs. Resorption
has been affected by nutrient concentration of habitat, plant species and using
strategies of nutrients. A. altissima
is both opportunistic and nutrient conservative strategy in terms of ecologically.
So, resorption should be evaluated together these factors. The study area was
selected as forested area in the Hendek district of Sakarya province where the disturbance
was effective. Similar areas in terms of vegetation and environmental
characteristics (soil, topography, etc.) were selected. Three individuals of A. altissima were identified from each
area and both leaf and soil samples were taken during the vegetation period.
According to the findings, the N resorption ability of the species was found to
be high and P resorption ability was close to the limit values. In addition, it
was found that different soil properties (nutrient content, pH and electrical
conductivity) did not adversely affect the amount of N resorption.

Kaynakça

  • Vitousek, P, (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119, 553-572.
  • Aerts, R. (1996). Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 84, 597-608.
  • Aerts, R., Chapin, F.S. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances of Ecological Research, 30, 1-67.
  • Chabot, B.F., Hicks, D.J. (1982). The ecology of leaf life span. Annual Review of Ecology Systematics, 13, 229-259.
  • Lin, P., Wang, W. (2001). Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves. Ecological Engineering, 16, 415-424.
  • Tecimen, H.B., Makineci, E. (2007). Ağaçlarda besin maddelerinin yeniden taşınması olayı ve ekolojik yönü. SDÜ Orman Fakültesi Dergisi, 1, 134-145.
  • Darrah, P.R. (1993). The rhizosphere and plant nutrition: a quantitative approach. Plant Soil, 155(156), 1–20.
  • Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic Press, 672.
  • Hinsinger, P. (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy, 64, 225–265.
  • Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33-39.
  • Oleksyn, J., Reich, P.B., Zytkowıak, R., Karolewski, P., Tjoelker, M.G. (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations. Annals of Forest Science, 59, 1-18.
  • Ordoñez, J.C., Van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137-149.
  • Maire, V., Wright, I.J., Prentice, I.C., Batjes, N.H., Bhaskar, R., van Bodegom, P.M., ... Reich, P.B. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706-717.
  • Güsewell, S., Koerselman, W. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
  • Olde Venterink, H., Wassen, M.J., Verkroost, A.W.M., De Ruiter, P.C. (2003). Species richness-productivity patterns differ between N, P, and K limited wetlands. Ecology, 84(8), 2191-2199.
  • Kobe, R.K., Lepczyk, C.A., Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
  • Brant, A.N., Chen, H.Y. (2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34(5), 471-486.
  • Huston, M.A. (2012). Precipitation, soils, NPP, and biodiversity: Resurrection of Albrecht’s curve. Ecological Monographs, 82, 277–296.
  • Anacker, B.L. (2011). Phylogenetic patterns of endemism and diversity. University of California Press, Berkeley, 49-70.
  • Drenovsky, R.E., Koehler, C.E., Skelly, K., Richards, J.H. (2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
  • Eckstein, R.L., Karlsson, P.S., Weih, M. (1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate‐arctic regions. New Phytologist, 143, 177-189.
  • Yuan, Z., Chen, H.Y.H. (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542.
  • Wang, G. (2007). Leaf trait co-variation, respond and effect in a chronosequence. Journal of Vegetation Science, 18(4), 563-570.
  • Reich, P.B., Walters, M.B., Ellsworth, D.S. (1992). Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392.
  • Cornelissen, J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G., Poorter, H. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380.
  • Grime, J.P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86(6), 902-910.
  • Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485-496.
  • Keddy, P.A. (2001). Competition. Springer-Verlag, Berlin, 552.
  • Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B. (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164(S3), 143-164.
  • Westoby, M., Wright, I.J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261.
  • Distel, R.A., Moretto, A.S., Didoné, N.G. (2003). Nutrient resorption from senescing leaves in two Stipa species native to Central Argentina. Austral Ecology, 28, 210-215.
  • Killingbeck, K.T. (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
  • Killingbeck, K.T. (2004). Nutrient resorption plant . (In: Plant Cell Death and Related Processes, Ed.: L D. Nooden). Academic Press, San Diego, 215–226.
  • Albouchi, F., Hassen, I., Casabianca, H. (2013). Phytochemicals, antioxidant,antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. South African Journal of Botany, 87, 164–174.
  • Harris, P.T., Cannon, G.H., Smith, N.E., Muth, N.Z. (2013). Assessment of plantcommunity restoration following Tree-of-Heaven (Ailanthus altissima) control by Verticillium albo-atrum. Biological Invasions, 15, 1887-1893.
  • Knüsel, S., Conedera, M., Rigling, A., Fonti, P., Wunder, J. (2015). A tree-ring perspective on the invasion of Ailanthus altissima in protection forests. Forest Ecology and Management, 354, 334–343.
  • Meng, P.P., Pei, H.Y., Hu, W.R., Liu, Z.D., Li, X.Q., Xu, H.Z., 2015. Allelopathic effectsof Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere, 141, 219-226.
  • Milla, R., Maestro-Martínez, M., Montserrat-Martí, G. (2004). Seasonal branch nutrient dynamics in two Mediterranean woody shrubs with contrasted phenology. Annals of Botany, 93, 671-680.
  • Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11-33.
  • Allen S.E., Grimshaw H.M., Parkinson J.A., Quarmby C., Roberts J.D. (1986). Chemical Analysis, in: Chapman S.B. (Ed.), Methods in Plant Ecology. Blackwell Scientific Publications, Oxford, 411-466.
  • Balkovič, J., Kollár, J., Šimonovič, V. (2012). Experience with using Ellenberg’s R indicator values in Slovakia: Oligotrophic and mesotrophic submontane broad-leaved forests. Biologia, 67(3), 474-482.
  • Kılınç, M., Kutbay, H.G., Yalçın, E., Bilgin, A. (2006). Bitki ekolojisi ve bitki sosyolojisi uygulamaları. Palme yayıncılık, Ankara, 370.
  • Bray, R.H., Kurtz, L.T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46.
  • Irmak, A. (1954). Arazide ve Laboratuarda Toprağın Araştırılması Metotları. İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul, 150.
  • Gülçur, F. (1974). Toprağın fiziksel ve kimyasal analiz metodları. İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul, 225.
  • Eruz, E. (1979). Toprak tuzluluğu ve bitkiler üzerindeki genel etkileri. Journal of the Faculty of Forestry, 112-120.
  • van Heerwaarden L.M., Toet S., Aerts R. (2003). Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos, 101, 664-669.
  • Anonim (2017). SPSS 17.0 for Windows. SPSS Inc., New York.
  • González-Muñoz, N., Castro-Díez, P., Parker, I.M. (2013). Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems. Plant and Soil, 363(1-2), 319-329.
  • Swan, C.M., Healey, B. (2008). The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience, 15(1), 27–35.
  • Castro-Díez, P., González-Muñoz, N., Alonso, A., Gallardo, A., Poorter, L. (2009). Effects of exotic invasive trees on nitrogen cycling: a case of study in Central Spain. Biological Invasions, 11, 1973-1986.
  • Alonso, A., González-Muñoz, N., Castro-Díez, P. (2010). Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecological Research, 25, 647-653.
  • Lima, A.L.D.S., Zanella, F., Schiavianto M.A., Haddad, C.R.B. (2006). N availibility and mechanisms of N conservation in deciduoud and semideciduous tropical forest legume trees. Acta Botanica Brasilica, 20, 625-632.
  • Hongua, H.E., Bleby, T.M., Veneklaas, E.J., Lambers, H. (2001). Dinitrogen-fixing Acacia species from phosphorus-improverishes soils resorb leaf phosphorus efficiently. Plant, Cell and Environment, 34, 2060-2070.
  • Sürmen, B., Kutbay, H.G., Kiliç, D.D., Sürmen, M. (2014). Foliar resorption in nitrogen-fixing and non-fixing species in a swamp forest in northern Turkey. La Revue d'Écologie (La Terre et La Vie), 69(4), 318-327.
  • Kutbay, H.G., Ok, T. (2003). Foliar N and P resorption and nutrient levels along an elevation gradient in Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. Annals of Forest Science, 60, 449-454.
  • Surmen, B. (2012). Hacıosman Subasar Ormanında bazı azot tespiti yapan ve yapmayan ağaç ve çalı türlerinde yaprak rezorbsiyonu. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Sohrt, J., Herschbach, C., Weiler, M. (2018). Foliar P-but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees, 32(5), 1443-1455.
  • Gravano, E., Giulietti, V., Desotgiu, R., Bussotti, F., Grossoni, P., Gerosa, G., Tani, C. (2003). Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution. Environmental Pollution, 121(1), 137-146.
  • Jurik, W.T. (1986). Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. American Journal of Botany, 73(8), 1083-1092.
  • Walters, M.B., Kruger, E.L., Reich, P.B. (1993). Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia, 94, 7-16.
  • Bussotti, F. (2008). Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. Global Change Biology, 14, 2727–2739.
  • Sardans, J., Peñuelas, J. (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil, 365, 1-33.
  • Yılmaz, H., Kutbay, H.G., Surmen, B. (2019). Öksin bölgesinde plantasyon yapılan ve tahribata uğramamış ormanlarda bir Akdeniz türünün (Arbutus unedo) yaprak karakterleri. Eurasian Journal of Biological and Chemical Sciences, 2(2), baskıda.
  • Petruzzellis, F., Nardini, A., Savi, T., Tonet, V., Castello, M., Bacaro, G. (2018). Less safety for more efficiency: water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. Tree physiology, 39(1), 76-87.
  • Sürmen, B., Kutbay, H.G., Çakmak, A., Yılmaz, H. (2016). Comparison of Leaf Traits (SLA And LMA) on Different Populations of Alcea apterocarpa. Hacettepe Journal of Biolology and Chemistry, 44(2), 125-131.
  • Vila, M., Tessier, M., Suehs, C.M., et al (2006). Local and regional assessment of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. Journal of Biogeography, 33, 853-861.
  • Hayes, P., Turner, B.L., Lambers, H., Laliberté, E. (2014). Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million year dune chronosequence. Journal of Ecology, 102, 396-410.
  • Zhang, H., Guo, W.H., Yu, M.K., Wang, G.G., Wu, T.G. (2018). Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China. Science of the Total Environment, 618, 1-6.
  • Tang, L., Han, W., Chen, Y., Fang, J. (2013). Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. Journal of Plant Ecology, 6, 408–417.
  • Nasrin, S., Hossain, M., Rahman, M.M. (2019). Adaptive responses to salinity: nutrient resorption efficiency of Sonneratia apetala (Buch.-Ham.) along the salinity gradient in the Sundarbans of Bangladesh. Wetlands Ecology and Management, 27(2-3), 343-351.
  • Medina, E., Fernandez, W., Barboza, F. (2015). Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecology, 15(1), 3-13.

İstilacı Ailanthus altissima (Mill.) Swingle (Simaroubaceae) Türünün Yaprak N ve P Rezorbsiyonu

Yıl 2020, Cilt: 7 Sayı: 100. Yıl Özel Sayı, 35 - 50, 23.03.2020
https://doi.org/10.35193/bseufbd.641833

Öz

Bu çalışmada, istilacı Ailanthus altissima (Mill.) Swingle
türünün gelişme mevsimi boyunca yaprak N ve P rezorbsiyon düzeyleri
araştırılmıştır. Rezorbsiyon, besin maddelerinin çok yıllık dokulara yeniden
taşınma mekanizmasıdır. Bu mekanizma ağaç ve çalılarda besin maddesi döngüsünün
önemli bir bölümünü oluşturmaktadır. Rezorbsiyon, yetişme ortamının besin içeriği,
bitki türü ve besin maddelerinin kullanım stratejilerinden etkilenmektedir. A.
altissima ekolojik açıdan hem fırsatçı hem de besin koruma stratejisine sahip
bir türdür. Bu nedenle rezorbsiyon olayının bu özelliklerle birlikte
değerlendirilmesi gerekir. Çalışma alanı olarak

Sakarya
ili Hendek ilçesinde tahribatın etkili olduğu ormanlık alan seçilmiştir. Vejetasyon
ve çevresel özellikler (toprak, topoğrafik vb.) bakımından benzer alanlar
seçilmiştir. Her alandan 3
A.
altissima
birey tespit edilip, vejetasyon dönemi boyunca hem
yaprak hem de toprak örnekleri alınmıştır. Elde edilen bulgulara göre türün N
rezorbsiyon yeteneğinin yüksek düzeyde, P rezorbsiyon yeteneğinin ise sınır
değerlere yakın olduğu bulunmuştur. Ayrıca farklı toprak özelliklerinin (besin
içeriği, pH ve elektriksel iletkenlik) N rezorbsiyon miktarını olumsuz
etkilemediği tespit edilmiştir.

Kaynakça

  • Vitousek, P, (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119, 553-572.
  • Aerts, R. (1996). Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology, 84, 597-608.
  • Aerts, R., Chapin, F.S. (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances of Ecological Research, 30, 1-67.
  • Chabot, B.F., Hicks, D.J. (1982). The ecology of leaf life span. Annual Review of Ecology Systematics, 13, 229-259.
  • Lin, P., Wang, W. (2001). Changes in the leaf composition, leaf mass and leaf area during leaf senescence in three species of mangroves. Ecological Engineering, 16, 415-424.
  • Tecimen, H.B., Makineci, E. (2007). Ağaçlarda besin maddelerinin yeniden taşınması olayı ve ekolojik yönü. SDÜ Orman Fakültesi Dergisi, 1, 134-145.
  • Darrah, P.R. (1993). The rhizosphere and plant nutrition: a quantitative approach. Plant Soil, 155(156), 1–20.
  • Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic Press, 672.
  • Hinsinger, P. (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy, 64, 225–265.
  • Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33-39.
  • Oleksyn, J., Reich, P.B., Zytkowıak, R., Karolewski, P., Tjoelker, M.G. (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations. Annals of Forest Science, 59, 1-18.
  • Ordoñez, J.C., Van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137-149.
  • Maire, V., Wright, I.J., Prentice, I.C., Batjes, N.H., Bhaskar, R., van Bodegom, P.M., ... Reich, P.B. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24(6), 706-717.
  • Güsewell, S., Koerselman, W. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
  • Olde Venterink, H., Wassen, M.J., Verkroost, A.W.M., De Ruiter, P.C. (2003). Species richness-productivity patterns differ between N, P, and K limited wetlands. Ecology, 84(8), 2191-2199.
  • Kobe, R.K., Lepczyk, C.A., Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
  • Brant, A.N., Chen, H.Y. (2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34(5), 471-486.
  • Huston, M.A. (2012). Precipitation, soils, NPP, and biodiversity: Resurrection of Albrecht’s curve. Ecological Monographs, 82, 277–296.
  • Anacker, B.L. (2011). Phylogenetic patterns of endemism and diversity. University of California Press, Berkeley, 49-70.
  • Drenovsky, R.E., Koehler, C.E., Skelly, K., Richards, J.H. (2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
  • Eckstein, R.L., Karlsson, P.S., Weih, M. (1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate‐arctic regions. New Phytologist, 143, 177-189.
  • Yuan, Z., Chen, H.Y.H. (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542.
  • Wang, G. (2007). Leaf trait co-variation, respond and effect in a chronosequence. Journal of Vegetation Science, 18(4), 563-570.
  • Reich, P.B., Walters, M.B., Ellsworth, D.S. (1992). Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392.
  • Cornelissen, J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G., Poorter, H. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380.
  • Grime, J.P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86(6), 902-910.
  • Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485-496.
  • Keddy, P.A. (2001). Competition. Springer-Verlag, Berlin, 552.
  • Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B. (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164(S3), 143-164.
  • Westoby, M., Wright, I.J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261.
  • Distel, R.A., Moretto, A.S., Didoné, N.G. (2003). Nutrient resorption from senescing leaves in two Stipa species native to Central Argentina. Austral Ecology, 28, 210-215.
  • Killingbeck, K.T. (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
  • Killingbeck, K.T. (2004). Nutrient resorption plant . (In: Plant Cell Death and Related Processes, Ed.: L D. Nooden). Academic Press, San Diego, 215–226.
  • Albouchi, F., Hassen, I., Casabianca, H. (2013). Phytochemicals, antioxidant,antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. South African Journal of Botany, 87, 164–174.
  • Harris, P.T., Cannon, G.H., Smith, N.E., Muth, N.Z. (2013). Assessment of plantcommunity restoration following Tree-of-Heaven (Ailanthus altissima) control by Verticillium albo-atrum. Biological Invasions, 15, 1887-1893.
  • Knüsel, S., Conedera, M., Rigling, A., Fonti, P., Wunder, J. (2015). A tree-ring perspective on the invasion of Ailanthus altissima in protection forests. Forest Ecology and Management, 354, 334–343.
  • Meng, P.P., Pei, H.Y., Hu, W.R., Liu, Z.D., Li, X.Q., Xu, H.Z., 2015. Allelopathic effectsof Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere, 141, 219-226.
  • Milla, R., Maestro-Martínez, M., Montserrat-Martí, G. (2004). Seasonal branch nutrient dynamics in two Mediterranean woody shrubs with contrasted phenology. Annals of Botany, 93, 671-680.
  • Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11-33.
  • Allen S.E., Grimshaw H.M., Parkinson J.A., Quarmby C., Roberts J.D. (1986). Chemical Analysis, in: Chapman S.B. (Ed.), Methods in Plant Ecology. Blackwell Scientific Publications, Oxford, 411-466.
  • Balkovič, J., Kollár, J., Šimonovič, V. (2012). Experience with using Ellenberg’s R indicator values in Slovakia: Oligotrophic and mesotrophic submontane broad-leaved forests. Biologia, 67(3), 474-482.
  • Kılınç, M., Kutbay, H.G., Yalçın, E., Bilgin, A. (2006). Bitki ekolojisi ve bitki sosyolojisi uygulamaları. Palme yayıncılık, Ankara, 370.
  • Bray, R.H., Kurtz, L.T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46.
  • Irmak, A. (1954). Arazide ve Laboratuarda Toprağın Araştırılması Metotları. İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul, 150.
  • Gülçur, F. (1974). Toprağın fiziksel ve kimyasal analiz metodları. İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul, 225.
  • Eruz, E. (1979). Toprak tuzluluğu ve bitkiler üzerindeki genel etkileri. Journal of the Faculty of Forestry, 112-120.
  • van Heerwaarden L.M., Toet S., Aerts R. (2003). Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos, 101, 664-669.
  • Anonim (2017). SPSS 17.0 for Windows. SPSS Inc., New York.
  • González-Muñoz, N., Castro-Díez, P., Parker, I.M. (2013). Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems. Plant and Soil, 363(1-2), 319-329.
  • Swan, C.M., Healey, B. (2008). The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience, 15(1), 27–35.
  • Castro-Díez, P., González-Muñoz, N., Alonso, A., Gallardo, A., Poorter, L. (2009). Effects of exotic invasive trees on nitrogen cycling: a case of study in Central Spain. Biological Invasions, 11, 1973-1986.
  • Alonso, A., González-Muñoz, N., Castro-Díez, P. (2010). Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecological Research, 25, 647-653.
  • Lima, A.L.D.S., Zanella, F., Schiavianto M.A., Haddad, C.R.B. (2006). N availibility and mechanisms of N conservation in deciduoud and semideciduous tropical forest legume trees. Acta Botanica Brasilica, 20, 625-632.
  • Hongua, H.E., Bleby, T.M., Veneklaas, E.J., Lambers, H. (2001). Dinitrogen-fixing Acacia species from phosphorus-improverishes soils resorb leaf phosphorus efficiently. Plant, Cell and Environment, 34, 2060-2070.
  • Sürmen, B., Kutbay, H.G., Kiliç, D.D., Sürmen, M. (2014). Foliar resorption in nitrogen-fixing and non-fixing species in a swamp forest in northern Turkey. La Revue d'Écologie (La Terre et La Vie), 69(4), 318-327.
  • Kutbay, H.G., Ok, T. (2003). Foliar N and P resorption and nutrient levels along an elevation gradient in Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. Annals of Forest Science, 60, 449-454.
  • Surmen, B. (2012). Hacıosman Subasar Ormanında bazı azot tespiti yapan ve yapmayan ağaç ve çalı türlerinde yaprak rezorbsiyonu. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Sohrt, J., Herschbach, C., Weiler, M. (2018). Foliar P-but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees, 32(5), 1443-1455.
  • Gravano, E., Giulietti, V., Desotgiu, R., Bussotti, F., Grossoni, P., Gerosa, G., Tani, C. (2003). Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution. Environmental Pollution, 121(1), 137-146.
  • Jurik, W.T. (1986). Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. American Journal of Botany, 73(8), 1083-1092.
  • Walters, M.B., Kruger, E.L., Reich, P.B. (1993). Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia, 94, 7-16.
  • Bussotti, F. (2008). Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. Global Change Biology, 14, 2727–2739.
  • Sardans, J., Peñuelas, J. (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil, 365, 1-33.
  • Yılmaz, H., Kutbay, H.G., Surmen, B. (2019). Öksin bölgesinde plantasyon yapılan ve tahribata uğramamış ormanlarda bir Akdeniz türünün (Arbutus unedo) yaprak karakterleri. Eurasian Journal of Biological and Chemical Sciences, 2(2), baskıda.
  • Petruzzellis, F., Nardini, A., Savi, T., Tonet, V., Castello, M., Bacaro, G. (2018). Less safety for more efficiency: water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. Tree physiology, 39(1), 76-87.
  • Sürmen, B., Kutbay, H.G., Çakmak, A., Yılmaz, H. (2016). Comparison of Leaf Traits (SLA And LMA) on Different Populations of Alcea apterocarpa. Hacettepe Journal of Biolology and Chemistry, 44(2), 125-131.
  • Vila, M., Tessier, M., Suehs, C.M., et al (2006). Local and regional assessment of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. Journal of Biogeography, 33, 853-861.
  • Hayes, P., Turner, B.L., Lambers, H., Laliberté, E. (2014). Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million year dune chronosequence. Journal of Ecology, 102, 396-410.
  • Zhang, H., Guo, W.H., Yu, M.K., Wang, G.G., Wu, T.G. (2018). Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China. Science of the Total Environment, 618, 1-6.
  • Tang, L., Han, W., Chen, Y., Fang, J. (2013). Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. Journal of Plant Ecology, 6, 408–417.
  • Nasrin, S., Hossain, M., Rahman, M.M. (2019). Adaptive responses to salinity: nutrient resorption efficiency of Sonneratia apetala (Buch.-Ham.) along the salinity gradient in the Sundarbans of Bangladesh. Wetlands Ecology and Management, 27(2-3), 343-351.
  • Medina, E., Fernandez, W., Barboza, F. (2015). Element uptake, accumulation, and resorption in leaves of mangrove species with different mechanisms of salt regulation. Web Ecology, 15(1), 3-13.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Burak Sürmen 0000-0002-4055-613X

Yayımlanma Tarihi 23 Mart 2020
Gönderilme Tarihi 2 Kasım 2019
Kabul Tarihi 21 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 100. Yıl Özel Sayı

Kaynak Göster

APA Sürmen, B. (2020). İstilacı Ailanthus altissima (Mill.) Swingle (Simaroubaceae) Türünün Yaprak N ve P Rezorbsiyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(100. Yıl Özel Sayı), 35-50. https://doi.org/10.35193/bseufbd.641833

Cited By

FEATURES OF SEED PROPAGATION OF AILANTHUS ALTISSIMA (MILL.) SWINGLE IN THE MYKOLAIV REGION
Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukraïni
https://doi.org/10.31548/dopovidi3(103).2023.005