Araştırma Makalesi
BibTex RIS Kaynak Göster

Sliding-Mode Control Techniques of SEPIC Converter in Continuous Current Mode

Yıl 2022, Cilt: 9 Sayı: 1, 195 - 207, 30.06.2022
https://doi.org/10.35193/bseufbd.1003509

Öz

Nowadays, direct current (DC) voltage is required for the operation of the machines used in many industrial applications. DC voltage generating photovoltaic (PV) panels or other DC voltage generators need to be converted from the voltage level produced by the DC voltage levels required for the operation of the machines. The conversion of a DC voltage to a different DC voltage is performed by DC-DC converters. The most commonly used DC-DC converters in the literature are buck, boost, buck-boost, CUK and SEPIC converter. In this study, different control methods are used in order to reach the desired voltage level of the output voltage of the equivalent series resistance and ideal SEPIC converter in continuous current mode. Conventional Proportional-Integral (PI) and Sliding Mode Control (SMC) methods are used to ensure that the converter reaches the desired voltage level. PI controller parameter values are calculated according to trial and error method. In order to compare the performances of the controller used in the case ideal and equivalent series resistance cases, the controller parameters are taken the same. SMC is shown to perform better in ideal and equivalent series resistance SEPIC converter compared to the traditional PI controller from simulation results. Besides, modeling and controller applications of SEPIC converter are realized by using MATLAB / SIMULINK program.

Kaynakça

  • Asadi, F. (2018). Power Electronics Control. İstanbul Umuttepe Education, 249-251.
  • Abut, N. (2008). Güç Elektroniği Yarıiletken ve Dönüştürücüler. İstanbul Umuttepe Education, 326-332.
  • Rashid, M. H. (2014). Power Electronics Devices, Circuits, and Applications. London Pearson Education, Fourth Edition, 210-211.
  • Şehirli, E., Altinay, M., Üstün, Ö., & Çakir, B. (2017). Comparison of Single Phase Buck-Boost and Sepic Led Driver. Light & Engineering, 25, 92-98.
  • Kesik, E. P. (2018). Design and implementation of a Sepic Battery Charger for Automotive PV Applications. Master Thesis, Istanbul Technical University, Graduate School of Science Engineering and Technology, İstanbul.
  • Sel, A. (2019). Dynamic output feedback discrete time sliding mode control of Sepic. Master Thesis, TOBB University of Economics & Technology, Graduate School of Engineering and Science, Ankara, 2019.
  • El Khateb, A., Rahim, N. A., Selvaraj J., & Uddin M. N. (2014).Fuzzy Logic Controller Based SEPIC Converter for Maximum Power Point Tracking.IEEE Transactions on Industry Applications, 50, 2349-2358.
  • Chiang, S. J., Shieh H., & Chen, M. (2009). Modeling and Control of PV Charger System with SEPIC Converter. IEEE Transactions on Industrial Electronics, 56, 4344-4353.
  • Zhao, R., & Kwasinski, A. (2009). Multiple-input single ended primary inductor converter (SEPIC) converter for distributed generation applications. 2009 IEEE Energy Conversion Congress and Exposition.20-24 September,San Jose, 1847-1854.
  • Jaafar, A., Lefranc, P., Godoy, E., Shi, X. L., Fayaz A., & Li, N. (2009). Experimental validation with a control point of view analysis of the SEPIC converter. 35th Annual Conference of IEEE Industrial Electronics. 3-5 November, Porto, 462-497.
  • Mamarelis, E., Petrone G., & Spagnuolo, G. (2014). Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications. IEEE Transactions on Industrial Electronics, 61, 3387-3398.
  • Al-Saffar, M. A., Ismail, E. H., Sabzali, A. J., & Fardoun, A.A. (2008). An Improved Topology of SEPIC Converter With Reduced Output Voltage Ripple. IEEE Transactions on Power Electronics, 23, 2377-2386.
  • Hammerbauer, J., & Stork, M. (2013). State space study of the SEPIC converter. 2013 International Conference on Applied Electronics. 10-12 September, Pilsen, 1-4.
  • Babaei, E., & Mahmoodieh, M. E. (2014). Calculation of Output Voltage Ripple and Design Considerations of SEPIC Converter. IEEE Transactions on Industrial Electronics, 61, 1213-1222.
  • Sakthivel, C., Selvakumar, K., & Venkatesan, T. (2019). Modified SEPIC Converter with High Static Gain for Renewable Energy Applications.Journal of Control Theory and Applications.
  • Niculescu, E., Purcaru D. M., & Niculescu, M. C. (2006). A Steady-State Analysis of the PWM SEPIC Converter. Proceedings of the 10th WSEAS international conference on Circuits. 10-12 July, Athens, 217 –222.
  • Bucz, Š., &Kozáková, A. (2018). Advanced Methods of PID Controller Tuning for Specified Performance.
  • Mehta J. A., & Naik, B. (2019).Sliding Mode Controllers for Power Electronic Converters. Springer, First Edition.
  • Ogata, K. (2010). Modern Control Engineering, International Edition.
  • Kaleli, A. (2021). Development of on-line neural network based adaptive fractional-order sliding mode robust controller on electromechanically actuated engine cooling system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 09596518211048033.
  • Ayten, K. K., Dumlu, A., & Kaleli, A. (2018). Real-time implementation of self-tuning regulator control technique for coupled tank industrial process system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(8), 1039-1052.
  • Kose, E., Abaci, K., & Aksoy, S. (2010). Modelling and analysis of mechanical systems with PID and Sliding Mode Control. National Conference on Electrical, Electronics and Computer Engineering, 179-183.

SEPIC Dönüştürücünün Sürekli Akım Modunda Kayan Kipli Kontrolü

Yıl 2022, Cilt: 9 Sayı: 1, 195 - 207, 30.06.2022
https://doi.org/10.35193/bseufbd.1003509

Öz

Günümüzde birçok endüstriyel uygulamalarda kullanılan makinaların çalışması için doğru akım (DC) gerilime ihtiyaç duyulmaktadır. DC gerilim üreten fotovoltaik (PV) paneller ya da diğer DC gerilim üreteçlerinin ürettikleri gerilim seviyesinden makinaların çalışması için gerekli farklı DC gerilim seviyelerine dönüştürülmeleri gerekmektedir. Bir DC gerilimi farklı bir DC gerilime dönüştürülmesi işlemi DC-DC dönüştürücüler tarafından gerçekleştirilmektedir. Literatürde en sık kullanılan DC-DC dönüştürücüler; alçaltıcı, yükseltici, alçaltıcı-yükseltici, CUK ve SEPIC dönüştürücüdür. Bu çalışmada sürekli akım modunda eşdeğer seri dirençli ve eşdeğer seri dirençsiz SEPIC dönüştürücünün çıkış geriliminin arzu edilen gerilim seviyesine ulaşması için farklı kontrol yöntemleri kullanılmıştır. Dönüştürücünün arzu edilen gerilim seviyesine ulaşmasını sağlamak için geleneksel Oransal-İntegral (PI) ve Kayan Kipli Kontrolcü (KKK) kullanılmıştır. PI kontrolcü parametre değerleri deneme-yanılma yöntemine göre hesaplanmıştır. İç dirençli ve iç dirençsiz durumda kullanılan kontrolcü performanslarını kıyaslamak amacıyla kontrolcü parametreleri aynı alınmıştır. Elde edilen simülasyon sonuçlarından kullanılan kontrolcüler kararlı durum hatası, yerleşme zamanı ve yükselme zamanı gibi başarım parametreleri açısından kıyaslanmıştır. KKK hem dirençli hem de iç dirençsiz SEPIC dönüştürücüde geleneksel PI denetleyiciye oranla daha iyi sonuç verdiği görülmüştür. Simülasyon çalışmaları MATLAB/SIMULINK programı kullanılarak yapılmıştır.

Kaynakça

  • Asadi, F. (2018). Power Electronics Control. İstanbul Umuttepe Education, 249-251.
  • Abut, N. (2008). Güç Elektroniği Yarıiletken ve Dönüştürücüler. İstanbul Umuttepe Education, 326-332.
  • Rashid, M. H. (2014). Power Electronics Devices, Circuits, and Applications. London Pearson Education, Fourth Edition, 210-211.
  • Şehirli, E., Altinay, M., Üstün, Ö., & Çakir, B. (2017). Comparison of Single Phase Buck-Boost and Sepic Led Driver. Light & Engineering, 25, 92-98.
  • Kesik, E. P. (2018). Design and implementation of a Sepic Battery Charger for Automotive PV Applications. Master Thesis, Istanbul Technical University, Graduate School of Science Engineering and Technology, İstanbul.
  • Sel, A. (2019). Dynamic output feedback discrete time sliding mode control of Sepic. Master Thesis, TOBB University of Economics & Technology, Graduate School of Engineering and Science, Ankara, 2019.
  • El Khateb, A., Rahim, N. A., Selvaraj J., & Uddin M. N. (2014).Fuzzy Logic Controller Based SEPIC Converter for Maximum Power Point Tracking.IEEE Transactions on Industry Applications, 50, 2349-2358.
  • Chiang, S. J., Shieh H., & Chen, M. (2009). Modeling and Control of PV Charger System with SEPIC Converter. IEEE Transactions on Industrial Electronics, 56, 4344-4353.
  • Zhao, R., & Kwasinski, A. (2009). Multiple-input single ended primary inductor converter (SEPIC) converter for distributed generation applications. 2009 IEEE Energy Conversion Congress and Exposition.20-24 September,San Jose, 1847-1854.
  • Jaafar, A., Lefranc, P., Godoy, E., Shi, X. L., Fayaz A., & Li, N. (2009). Experimental validation with a control point of view analysis of the SEPIC converter. 35th Annual Conference of IEEE Industrial Electronics. 3-5 November, Porto, 462-497.
  • Mamarelis, E., Petrone G., & Spagnuolo, G. (2014). Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications. IEEE Transactions on Industrial Electronics, 61, 3387-3398.
  • Al-Saffar, M. A., Ismail, E. H., Sabzali, A. J., & Fardoun, A.A. (2008). An Improved Topology of SEPIC Converter With Reduced Output Voltage Ripple. IEEE Transactions on Power Electronics, 23, 2377-2386.
  • Hammerbauer, J., & Stork, M. (2013). State space study of the SEPIC converter. 2013 International Conference on Applied Electronics. 10-12 September, Pilsen, 1-4.
  • Babaei, E., & Mahmoodieh, M. E. (2014). Calculation of Output Voltage Ripple and Design Considerations of SEPIC Converter. IEEE Transactions on Industrial Electronics, 61, 1213-1222.
  • Sakthivel, C., Selvakumar, K., & Venkatesan, T. (2019). Modified SEPIC Converter with High Static Gain for Renewable Energy Applications.Journal of Control Theory and Applications.
  • Niculescu, E., Purcaru D. M., & Niculescu, M. C. (2006). A Steady-State Analysis of the PWM SEPIC Converter. Proceedings of the 10th WSEAS international conference on Circuits. 10-12 July, Athens, 217 –222.
  • Bucz, Š., &Kozáková, A. (2018). Advanced Methods of PID Controller Tuning for Specified Performance.
  • Mehta J. A., & Naik, B. (2019).Sliding Mode Controllers for Power Electronic Converters. Springer, First Edition.
  • Ogata, K. (2010). Modern Control Engineering, International Edition.
  • Kaleli, A. (2021). Development of on-line neural network based adaptive fractional-order sliding mode robust controller on electromechanically actuated engine cooling system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 09596518211048033.
  • Ayten, K. K., Dumlu, A., & Kaleli, A. (2018). Real-time implementation of self-tuning regulator control technique for coupled tank industrial process system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(8), 1039-1052.
  • Kose, E., Abaci, K., & Aksoy, S. (2010). Modelling and analysis of mechanical systems with PID and Sliding Mode Control. National Conference on Electrical, Electronics and Computer Engineering, 179-183.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Yılmaz 0000-0001-7624-4245

Muhammet Emin Kalçık 0000-0001-8601-1269

Muhammedfatih Corapsiz 0000-0001-5692-8367

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 1 Ekim 2021
Kabul Tarihi 4 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Yılmaz, M., Kalçık, M. E., & Corapsiz, M. (2022). Sliding-Mode Control Techniques of SEPIC Converter in Continuous Current Mode. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 195-207. https://doi.org/10.35193/bseufbd.1003509